Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
Kẻ đường kính AM của (O) \(\Rightarrow D\in BC\)
\(\widehat{ACM}=90^o;\widehat{ABM}=90^o\)(góc nội tiếp chắn nửa đường tròn)
Ta có: \(\Delta ABH~\Delta AMC\left(g.g\right)\Rightarrow\frac{HB}{CM}=\frac{AB}{AM}\Rightarrow HB.AM=AB.CM\)
\(\Delta HCA~\Delta BMA\left(g.g\right)\Rightarrow\frac{HC}{BM}=\frac{AC}{AM}\Rightarrow HC.AM=AC.BM\)
Chia vế theo vế, ta được: \(\frac{HB}{HC}=\frac{AB.MC}{AC.MB}\left(1\right)\)
Lại có: \(\Delta ADB~\Delta CDM\left(g.g\right)\Rightarrow\frac{DB}{DM}=\frac{AB}{CM}\Rightarrow DB.CM=DM.AB\)
\(\Delta DAC~\Delta DBM\left(g.g\right)\Rightarrow\frac{DC}{DM}=\frac{AC}{BM}\Rightarrow DC.BM=AC.DM\)
Chia vế theo vế, ta được: \(\frac{DB}{DC}=\frac{AB.MB}{AC.MC}\left(2\right)\)
Cộng vế theo vế (1), (2) ta được: \(\frac{HB}{HC}+\frac{DB}{DC}=\frac{AB}{AC}\left(\frac{MC}{MB}+\frac{MB}{MC}\right)\ge\frac{AB}{AC}.2\sqrt{\frac{MC}{MB}.\frac{MB}{MC}}=\frac{2.AB}{AC}\)
Mà \(\frac{AB}{AC}=\frac{sinC}{sinB}\Rightarrow\frac{HB}{HC}+\frac{MB}{MC}\ge\frac{2.sinC}{sinB}\)
Dấu "=" xảy ra khi \(MB=MC\Leftrightarrow AB=AC\Leftrightarrow\Delta ABC\)cân tại A
B A C O D E F S M N S'
1) Theo t/c góc tạo bởi tia tiếp và dây cung: \(\widehat{BCA}=\widehat{BAD}\). Dễ có \(\widehat{BCA}=\widehat{BAC}=30^0\)
\(\Rightarrow\widehat{BAD}=30^0\)\(\Rightarrow\widehat{BAC}+\widehat{BAD}=60^0\Rightarrow\widehat{DAC}=60^0\). Đồng thời \(\widehat{BAC}=\widehat{BAD}\)
=> AB là tia phân giác trong tam giác ADC
Xét \(\Delta\)ADC có: \(\widehat{DAC}=60^0;\widehat{DCA}=\widehat{BCA}=30^0\)
=> \(\Delta\)ADC vuông tại D. Hay \(\Delta\)ADC nửa đều => \(\frac{AD}{AC}=\frac{1}{2}\)
Ta có: AB là phân giác trong tam giác ADC (cmt) \(\Rightarrow\frac{AD}{AC}=\frac{DB}{CB}=\frac{1}{2}\Rightarrow\frac{DB}{DC}=\frac{1}{3}\)
2) Dễ thấy \(\widehat{ABD}=\widehat{BAC}+\widehat{BCA}=60^0\). Xét \(\Delta\)ADB:
\(\widehat{ADB}=90^0\)(cmt); \(\widehat{ABD}=60^0\)=> \(\Delta\)ADB nửa đều => BD = 1/2 AB
Áp dụng ĐL Pytagore cho \(\Delta\)ADB nửa đều:
\(AD^2=AB^2-BD^2=AB^2-\frac{1}{4}.AB^2=\frac{3}{4}.AB^2\)\(\Leftrightarrow AD=\frac{\sqrt{3}}{2}.AB\)
\(\Leftrightarrow\frac{AB}{AD}=\frac{2}{\sqrt{3}}\)(1)
Tương tự với tam giác ANB nửa đều: \(\frac{AB}{AN}=\frac{2}{\sqrt{3}}\Leftrightarrow\frac{AB}{2AN}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)(2)
Cộng (1) với (2) \(\Rightarrow\frac{AB}{AD}+\frac{AB}{AC}=\frac{3}{\sqrt{3}}=\sqrt{3}\Leftrightarrow\frac{1}{AD}+\frac{1}{AC}=\frac{\sqrt{3}}{AB}\)(đpcm).
3) Gọi giao điểm của NE với AO là S; MF với AO là S'. Ta đi c/m S trùng với S' .
Dễ thấy: \(\widehat{OBC}=180^0-\widehat{ABD}-\widehat{ABN}=60^0\)\(\Rightarrow\widehat{OCB}=60^0\)
Mà \(\widehat{ABD}=60^0\Rightarrow\widehat{OCB}=\widehat{ABD}\). Do 2 góc này đồng vị nên AB // OC
Hay BE // OC \(\Rightarrow\frac{DB}{CB}=\frac{DE}{OE}\)(ĐL Thales) . Mà \(\frac{DB}{CB}=\frac{1}{2}\)(câu b)
\(\Rightarrow\frac{DE}{OE}=\frac{1}{2}\). Lại có: \(\frac{DE}{OE}=\frac{BE}{AE}\Rightarrow\frac{BE}{AE}=\frac{1}{2}\)(Hệ quả ĐL Thales)
Tứ giác ABCO có: AB // OC; AO // OB (Cùng vuông góc AD); AC vuông BO
=> Tứ giác ABCO là hình thoi. N là trung điểm AC => N cũng là trung điểm BO => \(\frac{ON}{BN}=1\)
Nhận thấy \(\Delta\)ABO có: E thuộc AB; N thuộc OB; NE cắt AO ở S
\(\Rightarrow\frac{BE}{AE}.\frac{ON}{BN}.\frac{SA}{SO}=1\)(ĐL Menelaus)
Thay \(\frac{BE}{AE}=\frac{1}{2};\frac{ON}{BN}=1\Rightarrow\frac{SA}{SO}.\frac{1}{2}=1\Leftrightarrow\frac{SA}{SO}=2\Leftrightarrow\frac{SA}{AO}=2\)(*)
Áp dụng hệ quả ĐL Thales: \(\frac{OF}{EF}=\frac{OC}{AE}=\frac{AB}{AE}\)(Do OC=AB)
Lại có: \(\frac{BE}{AE}=\frac{1}{2}\Rightarrow\frac{AB}{AE}=\frac{3}{2}\)\(\Rightarrow\frac{OF}{EF}=\frac{3}{2}\)
Vì \(\frac{BE}{AB}=\frac{1}{3}\Rightarrow\frac{BE}{\frac{1}{2}.AB}=\frac{2}{3}\Rightarrow\frac{BE}{BM}=\frac{2}{3}\Rightarrow\frac{EM}{BM}=\frac{1}{3}\). Mà BM=AM
\(\Rightarrow\frac{EM}{AM}=\frac{1}{3}\). Ta áp dụng ĐL Menelaus với \(\Delta\)AEO:
\(\frac{OF}{EF}.\frac{BE}{EM}.\frac{S'A}{S'O}=1\). Thế \(\frac{EM}{AM}=\frac{1}{3};\frac{OF}{EF}=\frac{3}{2}\)(cmt)
\(\Rightarrow\frac{S'A}{S'O}.\frac{1}{3}.\frac{3}{2}=1\Rightarrow\frac{S'A}{S'O}=2\Rightarrow\frac{S'A}{AO}=2\)(**)
Từ (*) và (**) suy ra \(SA=S'A\). Mà 3 điểm A;S;S' thẳng hàng
Nên S trùng với S' => 3 đường AO;MF;NE gặp nhau tại 1 điểm (đpcm).
Tỉ số \(\frac{DB}{CB}=\frac{1}{2}\) được lấy từ ý 1) nhé, quen tay nên gõ nhầm.
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.