K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

A, gỌI h LAG HÌNH CHIẾU CỦA E TRÊN AB
XÉT CÁC CẶP TAM GIÁC ĐỒNG DẠNG aeh VÀ abc; BEH VÀ BDA , LẤY TỈ SỐ => TỔNG TRÊN = R^2 (HÌNH NHƯ THẾ :|)
B,
S(acm)+S(bdm)+S(abm)=S(cabd)
từ c kẻ đt song song với ab cắt bd tại k
dùng bđt trong tam giác =>...

1: Xét (O) có 

DM là tiếp tuyến

DA là tiếp tuyến

Do đó: DM=DA và OD là tia phân giác của góc MOA(1)

Xét (O) có 

EM là tiếp tuyến

EB là tiếp tuyến

Do đó: EM=EB và OE là tia phân giác của góc MOB(2)

Ta có: DE=DM+ME

nên DE=AD+BE

2: Từ (1) và (2) suy ra \(\widehat{DOE}=\dfrac{1}{2}\cdot\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔDOE vuông tại O