K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

2: góc ACD=1/2*sđ cung AD=90 độ

ΔMAD vuông tại A có AC là đường cao

nên MA^2=MC*MD

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại H

=>MH*MO=MA^2=MC*MD

25 tháng 1 2022

mình bổ sung OM vuông AB nhé 

a, Ta có : AM = MB ( tc tiếp tuyến cắt nha ) 

OA = OB => OM là đường trung trực đoạn AB 

=> OM vuông AB 

b, Xét tam giác MBC và tam giác MDB có : 

^M _ chung ; ^MBC = ^MDB ( cùng chắn cung BC ) 

Vậy tam giác MBC ~ tam giác MDB ( g.g ) 

=> MB/MD=MB/MC => MB^2 = MD.MC (1)

c, Vì MB là tiếp tuyến đường tròn (O) với B là tiếp điểm 

=> ^MBO = 900

Xét tam giác MBO vuông tại B, đường cao BH 

Ta có : MB^2 = MH . MO ( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra MC . MD = MH . MO 

17 tháng 4 2020

a) Xét (O;R) có:

\(\widehat{BCD}\)là góc nt chắn cung BC

\(\widehat{BAC}\)là góc nt chắn cung BC

\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)

Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)

Xét \(\Delta ACM\)và \(\Delta DBM\):

\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)

\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)

\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)

b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)

Xét \(\left(O;R\right):\)

\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)

\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)

\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)

Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)

Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)

Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)

Xét tg ABCE có:

\(AB//CE\)

\(\widehat{MAC}=\widehat{ABE}\)

\(\Rightarrow Tg\)ABCE là hthang cân

c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:

\(AM^2=AC^2-CM^2\)(1)

\(MB^2=BC^2-CM^2\)(2)

\(MC^2=BC^2-BM^2\)(3)

\(MD^2=BD^2-BM^2\)(4)

\(DE^2=BD^2+BE^2\)(5)

Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:

\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)

                                                              \(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)

                                                               \(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))

                                                                \(=AC^2+BD^2\)

                                                                  \(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)

                                                                  \(=DE^2\)(c/m (5))

Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)

Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)

27 tháng 5 2018

giúp câu c