Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$M=\frac{27}{x-15}-1$
Để $M$ min thì $\frac{27}{x-15}$ min.
Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất
$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15
$\Rightarrow x=14$
Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$
Bài 2:
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)
$\Rightarrow x-4=-4\Leftrightarrow x=0$
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=17\)
\(\left(\frac{1}{2}\right)^x.\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\left(\frac{1}{2}\right)^x=\frac{17.16}{17}=16\)
\(\left(\frac{1}{2}\right)^x=16=\left(\frac{1}{2}\right)^{-4}\)
=> x = -4
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left(1+\frac{1}{16}\right)=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=16\)
\(\Leftrightarrow\frac{1}{2^x}=\frac{1}{2^{-4}}\)
\(\Rightarrow x=-4\)