Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết \(f\left(x_1+x_2\right)=f\left(x_1+x_2\right)\) ta có các biến đổi sau:
\(f\left(2020\right)=f\left(1024\right)+f\left(996\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(484\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(228\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(100\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(36\right)\)
\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(32\right)+f\left(4\right)\)
Dễ tính \(f\left(1024\right)=\)\(2.f\left(512\right)=4.f\left(256\right)=8.f\left(128\right)=16.f\left(64\right)\)
\(=32.f\left(32\right)=64.f\left(16\right)=128.f\left(8\right)=256.f\left(4\right)=512.f\left(2\right)\)
\(=1024.f\left(1\right)=1024\)
Tương tự ta có \(f\left(512\right)=512;f\left(256\right)=256;f\left(128\right)=128;f\left(64\right)=64;\)
\(f\left(32\right)=32;f\left(4\right)=4\)
\(\Rightarrow f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)
\(+f\left(32\right)+f\left(4\right)=2020\)
hay \(f\left(2020\right)=2020\)
Ta có: \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}.f\left(x\right)\)
\(\Rightarrow f\left(\frac{1}{2020}\right)=\frac{1}{2020^2}.2020=\frac{1}{2020}\)
\(\Rightarrow f\left(\frac{3}{2020}\right)=f\left(\frac{2}{2020}\right)+f\left(\frac{1}{2020}\right)\)
\(=f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)\)
\(=\frac{1}{2020}.3=\frac{3}{2020}\)
Vậy \(f\left(\frac{3}{2020}\right)=\frac{3}{2020}\)
a: f(-2)=4+3=7
f(-1)=2+3=5
f(0)=3
f(1/2)=-1+3=2
f(-1/2)=1+3=4
b: g(-1)=1-1=0
f(0)=0-1=-1
a) Ta có: \(y=f\left(x\right)=4x^2-5\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(3\right)=4.3^2-5=31\\f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2-5=-4\end{matrix}\right.\)
b) Ta có: \(f\left(x\right)=-1\)
\(\Rightarrow4x^2-5=-1\)
\(\Leftrightarrow4x^2=4\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{1;-1\right\}\) thì \(f\left(x\right)=-1\)
c) \(\forall x\in R,f\left(x\right)=f\left(-x\right)\Leftrightarrow f\left(-x\right)=4.\left(-x\right)^2-5=4x^2-5=f\left(x\right)\)
Vậy \(\forall x\in R\) thì \(f\left(x\right)=f\left(-x\right)\)
\(a.f\left(3\right)=4.3^2-5=31.\\ f\left(\dfrac{-1}{2}\right)=4.\left(\dfrac{-1}{2}\right)^2-5=-4.\)
\(b.f\left(x\right)=-1.\Rightarrow4x^2-5=-1.\\ \Leftrightarrow4x^2=4.\Leftrightarrow x^2=1.\\ \Leftrightarrow x=\pm1.\)
\(c.f\left(x\right)=f\left(-x\right).\\ \Rightarrow4x^2-5=4\left(-x\right)^2-5.\\ \Leftrightarrow4x^2-5=4x^2-5.\)
\(\Leftrightarrow0x=0\) (luôn đúng).
Vậy với mọi x ∈ R thì f (x)= f (-x).