\(P=2x+2xy-y\)

Tính giá trị của P với \(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2019

a) P = 2x + 2xy - y

|x| = 2,5 => x thuộc { 2,5; -2,5 }

* TH1 : x = 2,5 và y = -0,75

Thay vào P ta có :

P = 2 . 2,5 + 2 . 2,5 . (-0,75) - ( -0,75 ) 

P = 2

* TH2 : x = -2,5 và y = -0,75

Thay vào P ta có :

P = 2 . ( -2,5 ) + 2 . ( -2,5 ) . ( -0,75 ) - ( -0,75 )

P = -0,5

Vậy.....

13 tháng 1 2019

b) \(Q=\frac{2^{12}\cdot3^5-4^6\cdot81}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}\)

\(Q=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}\)

\(Q=\frac{2^{12}\cdot3^4\cdot\left(3-1\right)}{2^{12}\cdot3^5\cdot\left(3+1\right)}\)

\(Q=\frac{2}{3\cdot4}\)

\(Q=\frac{1}{3\cdot2}\)

\(Q=\frac{1}{6}\)

p/s: P làm Q, Q làm P :D

20 tháng 2 2017

=\(\frac{2^{12}.3^5+2^{12}.3^4}{2^{12}.3^6+2^{12}.3^3}\)

=\(\frac{2^{12}\left(3^5+3^4\right)}{2^{12}\left(3^6+3^3\right)}\)

\(=\frac{324}{756}\)

=\(\frac{3}{7}\)

27 tháng 1 2017

\(A=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}=\frac{2}{3.4}=\frac{1}{6}\)

15 tháng 7 2017

\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)

\(=\frac{2^{12}.3^4.2}{2^{12}.3^5.4}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)

\(=\frac{1}{6}-\frac{-10}{3}=\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}=\frac{7}{2}\)

9 tháng 1 2018

lam nhu stctv ay dung day to thu lam roi

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

20 tháng 10 2017

2048/3081

3 tháng 1 2019

\(\frac{2048}{5135}\)