Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo bài ra ta có:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)
=> \(\frac{a}{c}=\frac{b}{a}\)
=> a2= bc (đpcm)
vậy điều ngược lại hoàn toàn đúng
Ta có \(a^2\)=\(bc\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}\)=\(\frac{b}{a}\)=\(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)
Từ \(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)
Vậy \(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)
Thao khảo nè :
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Nguồn: Yahoo hỏi đáp
a/b=b/c=c/a=a+b+c/b+c+a=1
⇒a/b=b/c=c/a=1
=> a = b = c = 2013
Vậy b = 2013; c = 2013
Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/b+c+a=1
⇒a/b=b/c=c/a=1
=> a = b = c = 2003
Vậy b = 2003; c = 2003