K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2016
Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/b+c+a=1

a/b=b/c=c/a=1

=>   a = b = c = 2013

Vậy b = 2013; c = 2013
 
 
7 tháng 10 2016

Áp dụng tính chất dãy tỷ số bằng nhau, ta có:
a/b=b/c=c/a=a+b+c/
b+c+a=1

a/b=b/c=c/a=1

=> a = b = c = 2003

Vậy b = 2003; c = 2003

 
 
25 tháng 12 2016

theo bài ra ta có:

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)

=> \(\frac{a}{c}=\frac{b}{a}\)

=> a2= bc (đpcm)

vậy điều ngược lại hoàn toàn đúng

16 tháng 10 2016

Ta có \(a^2\)=\(bc\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{a}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}\)=\(\frac{b}{a}\)=\(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)

Từ \(\frac{a+b}{c+a}\)=\(\frac{a-b}{c-a}\)\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)

Vậy \(\frac{a+b}{a-b}\)=\(\frac{c+a}{c-a}\)

19 tháng 7 2017

Khó hỉu

31 tháng 8 2017

Lưu ý: dấu " / " là gạch ngang phân số

31 tháng 8 2017

Thao khảo nè :

  (a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

Nguồn: Yahoo hỏi đáp