Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Xét hiệu:
\(a+\frac{1}{4a}-1=(\sqrt{a})^2+(\frac{1}{2\sqrt{a}})^2-2.\sqrt{a}.\frac{1}{2\sqrt{a}}=(\sqrt{a}-\frac{1}{2\sqrt{a}})^2\geq 0, \forall a>0\)
\(\Rightarrow a+\frac{1}{4a}\geq 1\) (đpcm)
Dấu "=" xảy ra khi \(\sqrt{a}-\frac{1}{2\sqrt{a}}=0\) hay $a=\frac{1}{2}$
b)
Biểu thức \(\frac{16x^3-12x^2+1}{4x}+2018\) không có GTLN bạn nhé, chỉ có GTNN
Bạn tham khảo tại đây:
Câu hỏi của Đinh Diệp - Toán lớp 9 | Học trực tuyến
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
a/ \(a+\dfrac{1}{4a}\ge1\) dấu = xảy ra khi \(a=\dfrac{1}{2}\)
b/ \(\dfrac{16x^3-12x^2+1}{4x}+2018=\dfrac{\left(16x^3-16x^2+4x\right)+\left(4x^2-4x+1\right)}{4x}+2018\)
\(=\dfrac{\left(4x\sqrt{x}-2\sqrt{x}\right)^2+\left(2x-1\right)^2}{4x}+2018\ge2018\)
1.
Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)
Áp dụng bất đẳng thức Côsi cho 2 số dương
\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)
\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)
Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)
2.
\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)
Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5
\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5
Bài 1:
Áp dụng BĐT Bunhiacopxky:
\((a^2+b^2+c^2+d^2)(1+1+1+1)\geq (a+b+c+d)^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\geq \frac{(a+b+c+d)^2}{4}=\frac{2^2}{4}=1\) (đpcm)
Dấu "=" xay ra khi \(a=b=c=d=\frac{1}{2}\)
Bài 2:
Bạn xem lại đề:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(16a^4+1\geq 2\sqrt{16a^4.1}=8a^2\Rightarrow \frac{a^2}{1+16a^4}\leq \frac{a^2}{8a^2}=\frac{1}{8}(1)\)
\(b^4+1\geq 2\sqrt{b^4.1}=2b^2\Rightarrow \frac{b^2}{1+b^4}\leq \frac{b^2}{2b^2}=\frac{1}{2}(2)\)
Từ \((1);(2)\Rightarrow \frac{a^2}{1+16a^4}+\frac{b^2}{1+b^4}\leq \frac{1}{8}+\frac{1}{2}=\frac{5}{8}\) chứ không phải $\frac{1}{4}$
Nếu bạn muốn kết quả là $\frac{1}{4}$ thì cần thay $b^4$ bằng $16b^4$ và làm tương tự như trên.
\(\frac{8a^2+b}{4a}+b^2=2a+\frac{b}{4a}+b^2=a+a+\frac{b}{4a}+b^2\)
\(\ge a+1-b+\frac{1-a}{4a}+b^2=a+1-b+\frac{1}{4a}-\frac{1}{4}+b^2\)(do \(a+b\ge1\))
\(=\left(a+\frac{1}{4a}\right)+b^2-b+\frac{1}{4}+\frac{1}{2}\)
\(\ge2\sqrt{a\cdot\frac{1}{4a}}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\)
\(\ge2\cdot\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi \(a=b=\frac{1}{2}\)
mih sửa đề câu b) \(\frac{16x^3-12x^2+1}{4x}\)nhé
a) Áp dụng BĐT Cauchy cho hai số dương \(a,\frac{1}{4a}\) ta được :
\(a+\frac{1}{4a}\ge2\sqrt{a\cdot\frac{1}{4a}}=2\cdot\frac{1}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{2}\)