Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{2021}=3^{2020}\cdot3=\overline{...1}\cdot3=\overline{...3}\)
\(7^{2022}=7^{2020}\cdot7^2=\overline{...1}\cdot49=\overline{...9}\)
\(13^{2023}=13^{2020}\cdot13^3=\overline{...1}\cdot\overline{...7}=\overline{...7}\)
\(\Rightarrow3^{2021}\cdot7^{2022}\cdot13^{2023}=\overline{...3}\cdot\overline{...9}\cdot\overline{...7}=\overline{...9}\)
Vậy chữ số hàng đơn vị của tích trên là 9
\(B=3^{2021}.7^{2022}.13^{2023}\)
\(=3^{2020}.3.7^{2020}.7^2.13^{2020}.13^3\)
\(=\left(3^4\right)^{505}.3.\left(7^4\right)^{505}.49.\left(13^4\right)^{505}.2197\)
\(=\overline{\left(...1\right)}^{505}.3.\overline{\left(...1\right)}^{505}.49.\overline{\left(...1\right)}^{505}.2197\)
\(=\overline{\left(...1\right)}.3.\overline{\left(...1\right)}.49.\overline{\left(...1\right)}.2197\)
\(=\overline{\left(...3\right)}.\overline{\left(...9\right)}.\overline{\left(...7\right)}\)
\(=\overline{...9}\)
Chữ số tận cùng của 32021=34k.3=....3
Chữ số tận cùng của 72022=74k.72=....9
Chữ số tận cùng của 132023=...34k.(...3)3=...9
Chữ sống hàng đơn vị của B là: (...3)(...9)(...9)
B = 22021 . 72022 . 132023
= (2.1)2021 . (72)2011 . (13.1)2023
= (2.........1) (......9)( 13.....1)
= (......2 ).(.....9).(.....13)
=(.....4)
Vậy chữ số tận cùng là 4
Vì \(\left(2x-5\right)^{2020}\ge0\forall x\); \(\left(5y+1\right)^{2022}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)
mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)
Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a^{2022}+b^{2022}}{c^{2022}+d^{2022}}=\dfrac{b^2k^{2022}+b^{2022}}{d^{2022}k^{2022}+d^{2022}}=\left(\dfrac{b}{d}\right)^{2022}\)
\(\dfrac{\left(a+b\right)^{2022}}{\left(c+d\right)^{2022}}=\dfrac{\left(bk+b\right)^{2022}}{\left(dk+d\right)^{2022}}=\left(\dfrac{b}{d}\right)^{2022}\)
=>\(\dfrac{a^{2022}+b^{2022}}{c^{2022}+d^{2022}}=\dfrac{\left(a+b\right)^{2022}}{\left(c+d\right)^{2022}}\)