
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
a) Ta thấy \(\widehat{A}+\widehat{D}=180^o\) và 2 góc này ở vị trí trong cùng phía nên AB // CD
Vậy AB // CD
b) Ta có: \(\widehat{A}+\widehat{D}+\widehat{C}+\widehat{ABC}=360^o\) ( vì tổng các góc của 1 hình tứ giác bằng \(360^o\) )
\(\Rightarrow120^o+60^o+30^o+\widehat{ABC}=360^o\)
\(\Rightarrow\widehat{ABC}+210^o=360^o\)
\(\Rightarrow\widehat{ABC}=150^o\)
Vì AB // CD nên \(\widehat{C}=\widehat{xBC}=30^o\) ( so le trong )
Vậy \(\widehat{ABC}=150^o,\widehat{xAB}=30^o\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).Chứng tỏ:
\(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)


a) Có : \(AB^2+AC^2=3^2+4^2=25\) ; \(BC^2=5^2=25\)
Ta thấy \(AB^2+AC^2=BC^2\Rightarrow\Delta ABC\) vuông tại A
b) Xét \(\Delta ABD\) và \(\Delta EBD\) có:
\(\widehat{BAD}=\widehat{BED}=90^o;BD:chung;\widehat{ABD}=\widehat{EBD}\)
\(\Rightarrow\) \(\Delta ABD\) = \(\Delta EBD\)
\(\Rightarrow\) AD = ED
c) Xét \(\Delta ADF\) và \(\Delta EDC\) có:
\(\widehat{FDA}=\widehat{CDE};AD=ED;\widehat{FAD}=\widehat{CED}=90^o\)
\(\Rightarrow\) \(\Delta ADF\) = \(\Delta EDC\)
\(\Rightarrow\) DF = DC
Xét \(\Delta DEC\) vuông tại E
=> DE < DC mà DC = DF => DE < DF
a) Ta có: AB2 + AC2 = 32 + 42 = 9 + 16=25
BC2 = 52 = 25
=> AB2 + AC2 = BC2 (=25)
Áp dụng định lí Py - ta - go đảo
=> ΔABC vuông tại A.
b) Xét 2 Δ vuông ABD và EBD có:
+) ∠BAD = ∠BED = 90 độ
+) Cạnh BD chung
+) ∠B1 = ∠B2 (vì BD là tia phân giác của ∠B)
=> △ABD = ΔEBD (ch - góc nhọn)
=> AD = ED (2 cạnh tương ứng)
c) Xét 2 Δ vuông AFD và ECD có:
+) ∠FAD = ∠CED = 90 độ
+) AD = ED (cmt)
+) ∠FDA = ∠CDE (vì 2 góc đối đỉnh)
=> ΔAFD = ΔECD
=> DF = DC (2 cạnh tương ứng)
Xét △ CED vuông tại E có:
∠CED = 90 độ là góc lớn nhất
=> CD là cạnh lớn nhất
=> CD > ED
mà CD = FD (cmt)
=> FD > ED.
Chúc bạn học tốt!

Bài 1:
a: XétΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
Suy ra: BE=CD
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KDB}=\widehat{KEC}\)
Xét ΔKDB và ΔKEC có
\(\widehat{KDB}=\widehat{KEC}\)
BD=CE
\(\widehat{KBD}=\widehat{KCE}\)
Do đó: ΔKDB=ΔKEC

A B C D a)
ta có D là giao điểm của cung tròn tâm B với cung tròn tâm C=>BD là bán kính của cung tròn tâm B và CD là bán kính của cung tròn tâm C
ta có: DB là bán kính của cung tròn tâm B mà AC cũng là bán kính của cung tròn tâm B=> AC=BD
CM tương tự ta có: CD=AB
xét \(\Delta ABC\) và \(\Delta DCB\) có:
BD=AC(cmt)
AB=DC(cmt)
BC(chung)
\(\Rightarrow\Delta ABC=\Delta DCB\left(c.c.c\right)\)
=>\(\widehat{BAC}=\widehat{BDC}=80^o\)
b)
theo câu a, ta có:
\(\Delta ABC=\Delta DCB\Rightarrow\widehat{ABC}=\widehat{BCD}\)
=>CD//AB(2 góc slt)
A B C D Nếu bạn xem ko đc hình thì xem hình này cũng được, khi nãy mk vẽ quên căn
ở câu a, mk ko quen cách diễn đạt lớp 9 cho lắm nên thông cảm nhé

a) theo cách vẽ ta có:
DC=AB( = bán kính)
AD= BC(= bán kính)
Xét tam giác ADC và tam giác ABC có
AD=BC
DC= AB
AC: cạnh chung
=> tam giác ADC= tam giác CBA(c.c.c)
b) tương tự tam giác ABD= tam giác CDB(c.c.c)
c) ta có: góc ABD = góc BDC
=> AB// CD
góc DAC = góc ACB
=> AD//BC
Ta có \(\widehat{ADC}+\widehat{DAB}=180^{^{\text{o}}}\Rightarrow AB//CD\)
b) Vì AB//CD => \(\widehat{ABC}+\widehat{DCB}=180^{\text{o}}\)
=> \(\widehat{ABC}=180^{\text{o}}-\widehat{DCB}=180^{\text{o}}-30^{\text{o}}=150^{\text{o}}\)
Lại có AB//CD => \(\widehat{DCB}=\widehat{CBx}=30^{\text{o}}\left(\text{2 góc so le trong}\right)\)
a) Ta có: \(\widehat{DAB}+\widehat{ADC}=120^o+60^o=180^o\)
Mà 2 góc này ở vị trí trong cùng phía
\(\Rightarrow AB//CD\)
b) Vì \(AB//CD\)
\(\Rightarrow\widehat{ABC}+\widehat{BCD}=180^o\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{ABC}=180^o-30^o=150^o\)
Vì \(AB//CD\)
\(\Rightarrow Ax//CD\left(x\in AB\right)\)
\(\Rightarrow\widehat{xBC}=\widehat{BCD}=30^o\) (2 góc so le trong)