Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+\frac{1}{b}=1\)\(\Leftrightarrow\left(a+\frac{1}{b}\right)^2=1\)\(\Leftrightarrow a^2+\frac{1}{b^2}+\frac{2a}{b}=1\)\(\Leftrightarrow\frac{a}{b}=-1\)
\(a^2+\frac{1}{b^2}=3\)\(\Leftrightarrow\left(a^2+\frac{1}{b^2}\right)^2=9\)\(\Leftrightarrow a^4+\frac{1}{b^4}+\frac{2.a^2}{b^2}=9\)\(\Leftrightarrow a^4+\frac{1}{b^4}=7\)
\(N=\frac{a^4b^4+a^2b^2+1}{b^4}=a^4+\frac{a^2}{b^2}+\frac{1}{b^4}\)
Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{c\left(a+b+c\right)}+\frac{1}{ab}\right)=0\Leftrightarrow\frac{\left(a+b\right)\left(ab+c\left(a+c\right)+bc\right)}{abc\left(a+b+c\right)}=0\)\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(a+b+c\right)}=0\)
=> a+b=0 hoặc a+c=0 hoặc c+b=0
Vậy tích đó sẽ =0 do luon chứa 1 giá trị =0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\)\(\frac{ab+bc+ca}{abc}=0\)
\(\Rightarrow\)\(ab+bc+ca=0\)
\(\Rightarrow\)\(\hept{\begin{cases}ab=-\left(bc+ca\right)\\bc=-\left(ab+ca\right)\\ca=-\left(ab+bc\right)\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}a^2+2bc=a^2+bc-ab-ca=\left(a-b\right)\left(a-c\right)\\b^2+2ac=b^2+ac-ab-bc=\left(b-c\right)\left(b-a\right)\\c^2+2ab=c^2+ab-bc-ca=\left(c-a\right)\left(c-b\right)\end{cases}}\)
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
P/S: đến đây tự lm nhé