Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(1+bc\ge abc+1\)
=>\(\frac{a}{1+bc}\le\frac{a}{abc+1}\)
Tương tự, + hết vào, ta có
\(P\le\frac{a+b+c}{abc+1}\)
Mà a,b,c\(\in\left[0;1\right]\Rightarrow\left(1-a\right)\left(1-b\right)+\left(1-c\right)\left(1-ab\right)\ge0\)
=>\(a+b+c\le abc+2\le2abc+2\Rightarrow\frac{a+b+c}{abc+1}\le2\) ( cái này nhân tung ra và rút gọn và có là abc >=0)
=> P<=2
dấu = xảy ra <=> 2 số = 1 và 1 số = 0
^_^
Ta có:
\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)\)
\(=\left(a-b\right)\left(a+b\right)+c\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+c\right)\)(1)
\(b^2+ab-c^2-ac=\left(b^2-c^2\right)+\left(ab-ac\right)\)
\(=\left(b-c\right)\left(b+c\right)+a\left(b-c\right)\)
\(=\left(b-c\right)\left(a+b+c\right)\)(2)
\(c^2+bc-a^2-ab=\left(c^2-a^2\right)+\left(bc-ab\right)\)
\(=\left(c-a\right)\left(a+c\right)+b\left(c-a\right)\)
\(=\left(c-a\right)\left(a+b+c\right)\)(3)
Ta có : \(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}\)\(+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}\)\(+\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)(*)
Thế (1),(2),(3) vào (*)
=>\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{\left(c-a\right)+\left(a-b\right)+\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
Dễ thôi bạn chỉ cần quy đồng thôi
\(\frac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\frac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\)\(\frac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
=\(\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}\)\(+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
=\(\frac{c-a+a-b+b-c}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}=0\)
Ta có :\(\left(a-b\right)\left(c^2+bc-a^2-ab\right)=\left(a-b\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)
\(=\left(a-b\right)\left(c-a\right)\left(a+b+c\right)\)
Tương tự : \(\left(b-c\right)\left(a^2+ac-b^2-bc\right)=\left(b-c\right)\left(a-b\right)\left(a+b+c\right)\)
\(\left(c-a\right)\left(b^2+ab-c^2-ac\right)=\left(c-a\right)\left(b-c\right)\left(a+b+c\right)\)
\(MTC=\left(a-b\right)\left(b-c\right)\left(c-s\right)\left(a+b+c\right)\)
Kí hiệu biểu thức đã cho bởi \(Q\),ta có :
\(Q=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)