Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
Hiện tai minh chi moi giai được cau a thoi. a, Áp dung định lý py-ta-go cho tam giác Vuông ABC: AB^2+AC^2=BC^2. 6^2+8^2=BC^2 36+64=100. vay can100=10cm
A B C H D
a/ Làm luôn cho hoàn chỉnh:
Xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(6^2+8^2=BC^2\)
\(36+64=BC^2\)
\(100=BC^2\)
\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)
b/ Xét tam giác ABC và tam giác AHB có:
\(\hept{\begin{cases}\widehat{ABC}:chung\\\widehat{BAC}=\widehat{AHB}=90^0\left(gt\right)\end{cases}}\)
=> tam giác ABC ~ tam giác HBA (g.g)
c/ Từ chứng minh câu b
\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\Rightarrow AB^2=BC.BH\)
* Tính \(BH\):
Sử dụng chính tỉ số bên trên: \(\frac{AB}{BH}=\frac{BC}{AB}\Leftrightarrow\frac{6}{BH}=\frac{10}{6}\Rightarrow BH=\frac{6.6}{10}=3,6\left(cm\right)\)
* Tính \(HC\):
\(HC=BC-HB=10-3,6=6,4\left(cm\right)\)
d/ Xét tam giác ABD và tam giác ACD có:
\(\hept{\begin{cases}\widehat{BAD}=\widehat{DAC}\left(gt\right)\\\frac{BD}{AB}=\frac{DC}{AC}\left(tinhchatphangiac\right)\end{cases}}\)
=> tam giác ABD ~ tam giác ACD (c.g.c)
Tới đây bí rồi, để nghĩ tiếp
![](https://rs.olm.vn/images/avt/0.png?1311)
a/
Ta có
ED//BC\(\frac{AE}{AB}=\frac{AD}{AC}\Rightarrow\frac{6}{8}=\frac{AD}{20}\Rightarrow AD=\frac{20.6}{8}=15cm\)
b/
Ta có
AE=EF=6 cm (F đối xứng A qua E)
BE=AB-AE=8-6=2 cm
FB=EF-BE=6-2=4 cm
Do ED//BC nên
\(\frac{FB}{EF}=\frac{BI}{ED}\Rightarrow\frac{4}{6}=\frac{BI}{ED}=\frac{2}{3}\)
\(\frac{BC}{ED}=\frac{AB}{AE}=\frac{8}{6}=\frac{4}{3}\)
\(\Rightarrow\frac{BC}{ED}+\frac{BI}{ED}=\frac{4}{3}+\frac{2}{3}=\frac{6}{3}=2\left(dpcm\right)\)
a) Tổng các góc EDCB = 360o
b) Xét \(\Delta AGH\)có :
\(AE=EG\left(gt\right)\)
\(AD=DH\left(gt\right)\)
\(\Rightarrow\)ED là đường trung bình của \(\Delta AGH\)
\(\Rightarrow ED=\frac{1}{2}GH\)
\(\Rightarrow GH=2ED=2.24=48\left(cm\right)\)
c) Xét hình thang EDBC có :
\(EG=GB\left(gt\right)\)
\(DH=HC\left(gt\right)\)
\(\Rightarrow\)GH là đường trung bình của hình thang EDBC
\(\Rightarrow GH=\frac{ED+BC}{2}\)
\(\Rightarrow BC=2GH-ED=2.48-24=72\left(cm\right)\)