Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(x^2y+4xy+4y=162x-162\)
\(\Rightarrow y\left(x^2+4x+4\right)=162\left(x-1\right)\)
\(\Rightarrow y=\frac{162\left(x-1\right)}{x^2+4x+4}\)
Vì \(y\in Z\Rightarrow\frac{162\left(x-1\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x-1\right)\left(x+5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x-5\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{162\left(x^2+4x+4-9\right)}{x^2+4x+4}\in Z\)
\(\Rightarrow162-\frac{1458}{x^2+4x+4}\in Z\)
\(\Rightarrow\frac{1458}{\left(x+2\right)^2}\in Z\)
\(\Rightarrow\left(x+2\right)^2\in\left\{729,81,9\right\}\) vì \(\left(x+2\right)^2\) là số chính phương x>0
\(\Rightarrow x+2\in\left\{27,9,3\right\}\)
\(\Rightarrow x\in\left\{25,7,1\right\}\)
\(\Rightarrow y\in\left\{\frac{16}{3},12,0\right\}\)
\(\Rightarrow\left(x,y\right)\in\left\{\left(7,12\right),\left(1,0\right)\right\}\)
Bài 2 :
a,
E, F, G, H lần lượt là trung điểm của các cạnh AB,BC, CD, DA nên ta có:
EF là đường trung bình trong tam giác ABC nên \(\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)
GH là đường trung bình trong tam giác DAC nên \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)
Tứ giác EFGH có \(\hept{\begin{cases}GH//FE\\GH=FE=\frac{1}{2}AC\end{cases}}\) nên EFGH là hình bình hành
b,
EFGH là hình chữ nhật khi và chỉ khi EF vuông góc với FG hay AC vuông góc BD
a) Xét hình bình hành ABCD có I, K là trung điểm của AB và DC nên IK là đường trung bình. Vậy thì IK = BC = AD.
Xét tứ giác ADKI có 4 cạnh bằng nhau nên nó là hình thoi.
b) Chứng minh tương tự, ta có KCBI là hình thoi.
Vậy thì KA là phân giác góc \(\widehat{DKI}\) , KB là phân giác góc \(\widehat{IKC}\)
Vậy nên \(\widehat{AKB}=\widehat{AKI}+\widehat{IKB}=\frac{1}{2}\widehat{DKI}+\frac{1}{2}\widehat{IKC}=\frac{1}{2}.180^o=90^o\)
Vậy \(\widehat{AKB}=90^o\)
c) Do AB = DC = 2 BC = 2AD nên chu vi hình bình hành bằng 6 lần BC. Vậy BC = 30 : 6 = 5 (cm)
AB = 2 x 5 = 10 (cm)
Do IKCB là hình thoi nên BK là phân giác góc IBC. Vậy nên \(\widehat{IBK}=60^o\)
Suy ra IBK là tam giác đều hay KB = IK = BC = 5(cm)
Áp dụng định lý Pi-ta-go, ta có: \(AK=\sqrt{10^2-5^2}=5\sqrt{3}\left(cm\right)\)
Vậy diện tích tam giác AKB bằng: \(\frac{1}{2}.5.5\sqrt{3}=\frac{25}{2}\sqrt{3}\left(cm^2\right)\)
Dễ thấy diện tích hình bình hành gấp đôi diện tích tam giác AKB nên \(S_{ABCD}=25\sqrt{3}\left(cm^2\right)\)
a, HS tự chứng minh
b, HS tự chứng minh
c, Chú ý ∆AKD:∆ANC (g.g) và ∆ABI:∆ACM (g.g). Từ đó tính được AD.AN và AB.AM
bạn giải ra bài này chưa mình đang luyện thi casio nếu bạn biết hãy chỉ giúp mình nhá