K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 4 2024

D và E cùng nhìn BC dưới 1 góc vuông \(\Rightarrow BCDE\) nội tiếp

\(\Rightarrow\widehat{BDE}=\widehat{BCE}\) (cùng chắn BE)

Lại có \(\widehat{BCE}=\widehat{BD'E'}\) (cùng chắn BE' của (O))

\(\Rightarrow\widehat{BDE}=\widehat{BD'E'}\)

\(\Rightarrow DE||D'E'\) (hai góc đồng vị bằng nhau)

17 tháng 3 2021

A B C D E O H M N K

Gọi K là giao của AO với đường tròn

Gọi M và N lần lượt là giao của BD với AC bà CE với AB. Xét tg vuông ABM và ACN có \(\widehat{BAC}\) chung

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Mà sđ\(\widehat{ABD}=\frac{1}{2}\) sđ cung AD và sđ \(\widehat{ACE}=\frac{1}{2}\) sđ cung AE => sđ cung AD = sđ cung AE (1)

Ta có sđ cung AEK = sđ cung ADK (2)

sđ cung EK = sđ cung AEK - sđ cung AE (3)

sđ cung DK = sđ cung ADK - sđ cung AD (4)

Từ (1) (2) (3) và (4) => sđ cung EK = sđ cung DK (*)

sđ \(\widehat{EDK}=\frac{1}{2}\) sđ cung EK và sđ \(\widehat{DEK}=\frac{1}{2}\) sđ cung DK (**)

Từ (*) và (**)  \(\Rightarrow\widehat{EDK}=\widehat{DEK}\) => tam giác KDE cân tại K (***)

Mặt khác

\(\widehat{AKE}=\widehat{ACE}\) (Góc nội tiếp cùng chắn cung AE)

\(\widehat{AKD}=\widehat{ABD}\) (Góc nội tiếp cùng chắn cung AD)

Mà \(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)

\(\Rightarrow\widehat{AKE}=\widehat{AKD}\) => AO là phân giác của \(\widehat{DKE}\) (****)

Twg (***) và (****) \(\Rightarrow AO\perp ED\) (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao)

3: 

Xét ΔGMB và ΔGCA có

góc GMB=góc GCA

góc G chung

=>ΔGMB đồng dạng với ΔGCA

=>GM/GC=GB/GA

=>GM*GA=GB*GC

Xét ΔGEB và ΔGCD có

góc GEB=góc GCD

góc EGB chung

=>ΔGEB đồng dạng với ΔGCD

=>GE/GC=GB/GD

=>GE*GD=GB*GC=GM*GA

=>GE/GA=GM/GD

=>ΔGEM đồng dạng với ΔGAD

=>góc GEM=góc GAD

=>góc DEM+góc DAM=180 độ

=>ADEM nội tiếp

=>góc MDE=góc MAE

a) Gọi G là trung điểm của BC

Ta có: ΔDBC vuông tại D(BD\(\perp\)AC tại D)

mà DG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(DG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔEBC vuông tại E(CE\(\perp\)AB)

mà EG là đường trung tuyến ứng với cạnh huyền BC(G là trung điểm của BC)

nên \(EG=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: G là trung điểm của BC(gt)

nên \(BG=CG=\dfrac{BC}{2}\)(3)

Từ (1), (2) và (3) suy ra GB=GC=GE=GD

hay B,C,D,E cùng nằm trên một đường tròn(đpcm)

18 tháng 2 2021

cần câu d :v

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)Chứng minh rằng: IA.IB = AH.DHb) Tính AIBÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn...
Đọc tiếp

BÀI 1:Cho ABC cân tại A , Kẻ\(AH⊥BC\left(H\in BC\right)\) ,biết AB =25cm , BC = 30cm.

a) TừH kẻ\(HI⊥AB\left(I\in AB\right)\) và kẻ \(ID⊥AH\left(D\in AH\right)\)

Chứng minh rằng: IA.IB = AH.DH

b) Tính AI

BÀI 2 Cho tam giác ABC (AB>AC ; góc BAC >90o) I;Ktheo thứ tự là trung điểm của AB , AC.Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai D;tia BA cắt đường tròn (K) tại điểm thứ hai E ,tia CA cắt đường tròn (I) tại điểm thứ hai F.

a)CMR:3 điểm B;C;D thẳng hàng

b)CMR: Tứ giác BFEC nội tiếp 

c)CM:3 đường thẳng AD,BF,CE đồng quy?

BÀI 3 Cho tam giác ABC nhọn nội tiếp đường tròn (O), BD và CE là hai đường cao của tam giác , chúng cắt nhau tại H và cắt đường tròn (O) lần lượt ở D' và E'.Chứng minh :

a)Tứ giác BEDC nội tiêp 

b)DE song song D'E'

c)Cho BD cố định.Chứng minh rằng khi A di động trên cung lớn AB sao cho tam giác ABC là tam giác nhọn thì bán kính đường tròn ngoại tiếp tam giác ADE không đổi

0

a: góc HMC+góc HNC=180 độ

=>HMCN nội tiếp

b: góc CED=góc CAD

góc CDE=góc CAE

mà góc CAD=góc CAE(=góc CBD)

nên góc CED=góc CDE

=>CD=CE

27 tháng 5 2022

Xin lỗi bạn nhưng máy mình bị lỗi không vẽ hình được.

c) Tứ giác BEDC là tứ giác nội tiếp (câu a) \(\Rightarrow\widehat{BDE}=\widehat{BCE}\) hay \(\Rightarrow\widehat{BDE}=\widehat{BCQ}\) (1)

Xét (O) có \(\widehat{BCQ}\) và \(\widehat{BPQ}\) là các góc nội tiếp chắn \(\stackrel\frown{BQ}\) \(\Rightarrow\widehat{BCQ}=\widehat{BPQ}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{BDE}=\widehat{BPQ}\left(=\widehat{BCQ}\right)\)

\(\Rightarrow DE//PQ\) (2 góc đồng vị bằng nhau)

d) Kẻ tia tiếp tuyến Ax của (O) (ở đây mình lấy về phía B chứ còn bạn lấy tia tiếp tuyến này vế phía B hay phía C tùy) 

Dễ thấy \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) \(\Rightarrow\widehat{BAx}=\widehat{ACB}\)

Tứ giác BEDC nội tiếp \(\Rightarrow\widehat{AED}=\widehat{ACB}\) (góc ngoài = góc trong đối)

\(\Rightarrow\widehat{BAx}=\widehat{AED}\left(=\widehat{ACB}\right)\) \(\Rightarrow Ax//DE\) ( 2 góc so le trong bằng nhau)

Vì \(DE//PQ\left(cmt\right)\) \(\Rightarrow Ax//PQ\)\(\left(//DE\right)\)

Mà \(Ax\perp OA\) tại A (do Ax là tiếp tuyến tại A của (O)) \(\Rightarrow OA\perp PQ\) (3)

Xét (O) có OA là 1 phần đường kính và \(OA\perp PQ\left(cmt\right)\) 

\(\Rightarrow\) OA đi qua trung điểm của PQ  (4)

Từ (3) và (4) \(\Rightarrow\) OA là trung trực của đoạn PQ