Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
a, xét \(\Delta MKN\) và \(\Delta QMN\) có
\(\widehat{MKN}=\widehat{MQN}=90^o\)
chung \(\widehat{MNQ}\)
=> \(\Delta MKN\) đồng dạng với \(\Delta QMN\) (g.g)
b, vì MNPQ là hình chữ nhật => MN//NP
=> \(\widehat{MQN}=\widehat{QNP}\) (so le trong)
xét \(\Delta MKQ\) và \(\Delta QPN\) có
\(\widehat{MQN}=\widehat{QNP}\) (cmt)
\(\widehat{MKQ}=\widehat{NPQ=90^o}\)
=> \(\Delta MKQ\) đồng dạng với \(\Delta QPN\) (g.g)
=> \(\frac{MQ}{NQ}=\frac{MK}{QP}\left(đpcm\right)\)
\(\widehat{A}=\widehat{C}=90^o\)
=> 2 điểm A và C đều nhìn BD dưới cùng 1 góc 90 nên ABCD nnooij tiếp đường tròn đường kính BD
^CAD=1/2 số đo cung CD (Góc nội tiếp đường tròn) (1)
^CAD=1/2 số đo cung CD (Góc nội tiếp đường tròn) (2)
Từ (1) và (2) => ^CBD=^CAD