a b c d

Cho hình bên, biết AC=AD=7cm, BC=6cm, góc BAC=40độ, góc C...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2023

Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(cos35=\dfrac{8^2+8^2-BC^2}{2\cdot8\cdot8}\)

=>\(128-BC^2=2\cdot64\cdot cos35=128\cdot cos35\)

=>\(BC=\sqrt{128-128\cdot cos35}\simeq4,81\left(cm\right)\)

Xét ΔADC có \(\dfrac{CD}{sinCAD}=\dfrac{AC}{sinADC}\)

=>\(\dfrac{8}{sinADC}=\dfrac{6}{sin43}\)

=>\(sinADC=8\cdot\dfrac{sin43}{6}\simeq0,91\)

=>\(\widehat{ADC}\simeq65^0\)

 

12 tháng 8 2023

Hình vẽ đâu em?

12 tháng 8 2023

K có hình ạ

1 tháng 12 2019

3 tháng 9 2016

Từ B kẻ đường cao BH vuông góc với CD tại H. Đặt HC = x cm (x>0)

Ta có AB = DH = \(2\sqrt{3}\)

Áp dụng định lí Pytago : \(BH=\sqrt{BC^2-HC^2}=\sqrt{6^2-x^2}\) (cm)

=> \(AD=BH=\sqrt{6^2-x^2}\) (cm)

Lại có \(AD=tan30^o\times CD\) hay \(\sqrt{36-x^2}=\frac{\sqrt{3}}{3}.\left(2\sqrt{3}+x\right)\Leftrightarrow36-x^2=\frac{12+x^2+4\sqrt{3}}{3}\)

\(\Leftrightarrow\frac{4x^2}{3}=\frac{96-4\sqrt{3}}{3}\Rightarrow x=24-\sqrt{3}\) 

Vậy \(CD=2\sqrt{3}+x=2\sqrt{3}+24-\sqrt{3}=24+\sqrt{3}\) (cm)

Tham khảo:

5 tháng 7 2017

Ôn tập Hệ thức lượng trong tam giác vuông

a/

Áp dụng định lí Pitago vào ∆ABC vuông tại A ta được

\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\Rightarrow\)B^\(\approx53^0\)

C^\(=90^0-53^0\approx37^0\)

b/

Vì AD là tia phân giác A^ nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\)

\(DB=BC-DC=10-DC\)

Suy ra \(\dfrac{10-DC}{DC}=\dfrac{4}{6}\Rightarrow60-6.DC=4.DC\)

\(\Leftrightarrow10.DC=60\Leftrightarrow DC=6\left(cm\right)\)

Suy ra \(DB=10-6=4\left(cm\right)\)

6 tháng 10 2017

\(\dfrac{4}{6}\dfrac{ }{ }\) lấy ở đâu thế

9 tháng 6 2019

giúp vs ạ