Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
=> cd(a2 + b2) = ab(c2 + d2)
=> a2cd + b2cd = abc2 + abd2
=> a2cd + b2cd - abc2 - abd2 = 0
=> (a2cd - abc2) + (b2cd - abd2) = 0
=> ac(ad - bc) + bd(bc - ad) = 0
=> ac(ad - bc) - bd(ad - bc) = 0
=> (ac - bd)(ad - bc) = 0
=> \(\orbr{\begin{cases}ac-bd=0\\ad-bc=0\end{cases}}\Rightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{d}{c}\\\frac{a}{b}=\frac{c}{d}\end{cases}}\Rightarrow\text{đpcm}\)
Ta đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=> \(a=bk\)
\(c=dk\)
Ta có:
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2\times k^2+b^2}{d^2\times k^2+d^2}=\dfrac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
=> đpcm
Ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=-3\)
\(\frac{a}{2}=-3\Rightarrow a=-3\times2=-6\)
\(\frac{b}{3}=-3\Rightarrow b=-3\times3=-9\)
\(\frac{c}{4}=-3\Rightarrow c=-3\times4=-12\)
\(\frac{d}{5}=-3\Rightarrow d=-3\times5=-15\)
Vậy .......