K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

giai gium minh voi

 

17 tháng 6 2018

Ta có:

\(\left(\dfrac{a}{b}+\dfrac{b}{c}\right)^2\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+2.\dfrac{a}{b}.\dfrac{b}{c}\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge\dfrac{2a}{c}\left(1\right)\)

Tương tự:

\(\left(\dfrac{b}{c}+\dfrac{c}{a}\right)^2\ge0\Rightarrow\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2b}{a}\left(2\right)\)

\(\left(\dfrac{a}{b}+\dfrac{c}{a}\right)^2\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}\ge\dfrac{2c}{b}\left(3\right)\)

Từ (1)(2)(3) cộng vế theo vế ta được:

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\right)\)

\(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\)

\(9x^2-12xy+16y^2\)

\(=\left(3x\right)^2-2.\left(3x\right)\left(4y\right)+\left(4y\right)^2\)

\(=\left(3x-4y\right)^2\)

3 tháng 8 2016

\(P=\frac{x^2}{4}+x^2+1=\left(\frac{x}{2}\right)^2+2.x^2.\frac{1}{2}+1=\left(\frac{x}{2}+1\right)^2\)

2, a, \(9x^2-12x+9=\left(3x\right)^2-2.3.x.3+3^2=\left(3x-3\right)^2\ge0\)

12 tháng 7 2023

Mày nhìn cái chóa j

25 tháng 6 2017

Problem 3 IMO 2005 (Day 1) :D