Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt $a+1=6k, b+2007=6m$ với $k,m\in\mathbb{Z}$
$4^n+a+b=4^n+6k-1+6m-2007=(4^n-2008)+6k+6m$
Hiển nhiên $4^n-2008\vdots 2$ với mọi $n$ là tự nhiên khác 0
$4\equiv 1\pmod 3\Rightarrow 4^n\equiv 1\pmod 3$
$\Rightarrow 4^n-2008\equiv 1-2008\equiv -2007\equiv 0\pmod 3$
Vậy $4^n-2008$ chia hết cho cả 2 và 3 nên chia hết cho 6
$\Rightarrow 4^n+a+b=4^n-2008+6k+6m\vdots 6$ (đpcm)
Vì a, b, c, d là các số tự nhiên khác 0, nên a, b, c, d đều lớn hơn hoặc bằng 2.
Giả sử a^nb^nc^nd^n là số nguyên tố, tức là không thể phân tích thành tích của các số tự nhiên khác 1.
Ta có:
a^nb^nc^nd^n = (a^n)(b^n)(c^n)(d^n)
Vì a, b, c, d đều lớn hơn hoặc bằng 2, nên a^n, b^n, c^n, d^n đều lớn hơn hoặc bằng 2.
Vậy, (a^n)(b^n)(c^n)(d^n) là tích của ít nhất 4 số tự nhiên lớn hơn hoặc bằng 2.
Do đó, a^nb^nc^nd^n không thể là số nguyên tố.
Vậy, a^nb^nc^nd^n là hợp số.
Gọi d là ƯCLN(a2, a+ b)
=> a2 chia hết cho d
a + b chia hết cho d => a ( a +b) chia hết cho d hay a2 + ab chia hết cho d.
=> a2 + ab - a2 chia hết cho d
=> ab chia hết cho d; mà a, b là hai số nguyên tố cùng nhau (a,b) = 1
=> a chia hết cho d hoặc b chia hêt cho d.
- Nếu a chia hết cho d: Ta có: a + b chia hết cho d => b chia hết cho d
=> d\(\in\) ƯC (a;b) mà \(ƯCLN\)(a , b) =1 => d = 1 =>\(ƯCLN\)(a2, a + b) =1
- Nếu b chia hết cho d: Ta có a + b chia hết cho d => a chia hết cho d
=> d\(\in\) ƯC (a;b) mà \(ƯCLN\)(a , b) =1 => d = 1 =>\(ƯCLN\)(a2, a + b) =1
Vậy (a2, a + b) =1
\(X=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{c+b}{c}\cdot\frac{c+a}{a}\)
Mà \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\c+b=-a\end{cases}}\)
\(\Rightarrow X=\frac{\left(-a\right)\cdot\left(-b\right)\cdot\left(-c\right)}{abc}=-1\)
nên ta đc X là 1 số nguyên
KẾT QUẢ BẰNG 2 BẠN Ạ ! TUY KHÔNG BIẾT CÁCH LÀM NHƯNG KẾT QUẢ THÌ 100% ĐÚNG
k Chéo nha bp!
có đâu mà chép cha -_-