\(\sqrt{a}\)+ 2 ) : ( a - 3 \(\sqrt{a}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

a) đk: \(x\ge0\)

Ta có: 

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên

Ta có: \(A=\frac{2\sqrt{x}+10}{\sqrt{x}-3}=\frac{\left(2\sqrt{x}-6\right)+16}{\sqrt{x}-3}=2+\frac{16}{\sqrt{x}-3}\)

Để A nguyên => \(\frac{16}{\sqrt{x}-3}\inℤ\Rightarrow\sqrt{x}-3\inƯ\left(16\right)\)

Mà \(\sqrt{x}-3\ge-3\left(\forall x\right)\Rightarrow\sqrt{x}-3\in\left\{-2;-1;1;2;4;8;16\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7;12;20\right\}\)

\(\Rightarrow x\in\left\{1;4;16;25;49;144;400\right\}\)

25 tháng 8 2020

b) đk: \(x\ge0\)

Ta có:

+ Nếu: x không là số chính phương => A vô tỉ (loại)

+ Nếu: x là số chính phương => \(\sqrt{x}\) nguyên

Ta có: \(B=\frac{\sqrt{x}+8}{2\sqrt{x}+1}\Rightarrow2B=\frac{2\sqrt{x}+16}{2\sqrt{x}+1}=1+\frac{15}{2\sqrt{x}+1}\)

Để 2B nguyên => \(\frac{15}{2\sqrt{x}+1}\inℤ\Rightarrow2\sqrt{x}+1\inƯ\left(15\right)\)

Mà 1 lẻ nên để B nguyên => \(\frac{15}{2\sqrt{x}+1}\) lẻ, mặt khác: \(2\sqrt{x}+1\ge1\left(\forall x\right)\)

=> \(2\sqrt{x}+1\in\left\{1;3;5;15\right\}\Leftrightarrow2\sqrt{x}\in\left\{0;2;4;14\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;2;7\right\}\Rightarrow x\in\left\{0;1;4;49\right\}\)

6 tháng 7 2018

2)

\(\sqrt{12,1.360}=\sqrt{12,1}.\sqrt{36}.\sqrt{10}\)

\(=\sqrt{12,1.36.10}\)

= \(\sqrt{121.36}\)

\(=\sqrt{4356}\)

\(=66\)

3)

\(\sqrt{5a}.\sqrt{45a}-3a\)

\(=\sqrt{5.45a^2}-3a\)

\(=\sqrt{225a^2}-3a\)

\(=\sqrt{\left(15a\right)^2}-3a\)

\(=-15a-3a\) ( vì \(a\le0\))

\(=-18a\)

5)

\(\sqrt{0,36a^2}\)

\(=\sqrt{\left(0,6a\right)^2}\)

\(=-0,6a\) ( vì \(a< 0\) )

Để tối mình rảnh lên coi có làm tiếp được nữa hông thì mình làm ha.

Chúc bạn học tốt!

6 tháng 7 2018

1)

\(\sqrt{3a^3}.\sqrt{12}\)

\(=\sqrt{3}.\sqrt{a^3}.\sqrt{12}\)

\(=\sqrt{3.12}.\sqrt{a^3}\)

\(=6\sqrt{a^3}\)

4)

\(\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)

\(=9.6a.a^2-\sqrt{0,2}.\sqrt{18}.\sqrt{10}.\sqrt{a^2}\)

\(=54a^3-\sqrt{2}.\sqrt{18}.\sqrt{a^2}\)

\(=34a^3-\sqrt{2.18}.\sqrt{a^2}\)

\(=54a^3-6\sqrt{a^2}\)

\(=54a^3-6a^2\) ( vì a<0)

6)

\(\sqrt{a^4.\left(3-a^{ }\right)^2}\)

\(=\sqrt{\left(a^2\right)^2.\left(3-a\right)^2}\)

\(=\sqrt{\left(a^2\right)^2}.\sqrt{\left(3-a\right)^2}\)

\(=\left|a^2\right|\left|3-a\right|\) ( vì a>3 => a>3 nên 3-a<0)

\(\left|3-a\right|=-\left(-3-a\right)=-3+a=a-3\)

\(=a^2\left(a-3\right)\)

\(=a^3-3a^2\)

Còn lại bạn làm tương tự nha, trể quá rùi :)))))

18 tháng 9 2016

ko ai giải đc à

18 tháng 9 2016

top đâu rồi

30 tháng 7 2019

a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)

\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)

Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)

hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)

A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)

+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

30 tháng 7 2019

c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)

\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)

Vậy \(x\ge1\)thì A = B

d) \(x\le\frac{1}{2}\)