Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\left(b-a\right)^2+\left(a-b\right)\left(3a-2b\right)-a^2+b^2\)
\(=\left(a-b\right)^2+\left(a-b\right)\left(3a-2b\right)-\left(a^2-b^2\right)\)
\(=\left(a-b\right)^2+\left(a-b\right)\left(3a-2b\right)-\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left[\left(a-b\right)+\left(3a-2b\right)-\left(a+b\right)\right]\)
\(=\left(a-b\right)\left(a-b+3a-2b-a-b\right)\)
\(=\left(a-b\right)\left(3a-4b\right)\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)
\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)
\(=-3ab-6a^2b^2+6a^2b^2\)
= - 3ab
\(\text{ nhìn thì thiệt là rắc rối nhưng bạn chỉ để ý 1chút là được thui.}\)
\(\text{M=1.chi tiết cách giải nha: }\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)vì\left(a+b=1\right)\)
\(M=a^3+b^3+\left(3ab\left(a^2+b^2\right)+6a^2b^2\right)\)
\(M=a^3+b^3+3ab\left(a^2+b^2+2ab\right)\)
\(M=a^3+b^3+3ab\left(a+b\right)^2\)
\(M=\left(a^3+b^3\right)+3ab\)
\(M=\left(a+b\right)\left(a^2-2ab+b^2\right)+3ab\)
\(M=a^2-ab+b^2+3ab\)
\(M=a^2+b^2+2ab=\left(a+b\right)^2=1^2=1\)
C = 12 - 22 + 32 - 42 + 52 - 62 + ... + 20132 - 20142 + 20152
C = (1 - 2).(1 + 2) + (3 - 4).(3 + 4) + (5 - 6).(5 + 6) + ... + (2013 - 2014).(2013 + 2014) + 20152
C = -(1 + 2) + [-(3 + 4)] + [-(5 + 6)] + ... + [-(2013 + 2014)] + 4060225
C = -(1 + 2 + 3 + 4 + 5 + 6 + ... + 2013 + 2014) + 4060225
C = -(1 + 2014).2014:2 + 4060225
C = -2015.1007 + 4060225
C = -2029105 + 4060225
C = 2031120
\(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
\(\Leftrightarrow a^2+b^2+c^2\ge2a+2b+2c-3\)
\(\Leftrightarrow a^2+b^2+c^2-2a-2b-2c+3\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
Ta có
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=0\)(vì a+b+c=0)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Lại có
\(P=\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
xl viêm amidan ko ăn đc kem
Ai tick tui tròn 300 điểm đi!!!