Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a sai đề nên mik sửa lại nha
a) \(A=2019-\left(3x+8\right)^2\)
Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)
Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)
b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)
Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)
Vậy ...
b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)
Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)
Vậy ...
\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)
Dấu "=" xảy ra khi \(2x+1=15=>x=7\)
Vậy ...
\(a,A=2019-\left(3x+8\right)\)
GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)
\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)
GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)
\(a,A=\left(6x-1\right)^2+2018\ge2018\)
Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)
Vậy GTNN của A là 2018 khi x = 1/6
B ko hiểu
1)Đặt A= -125- ( x - 4)2 - ( y- 5 )2
Ta thấy:\(\begin{cases}-\left(x-4\right)^2\le0\\-\left(y-5\right)^2\le0\end{cases}\)
\(\Rightarrow-\left(x-4\right)^2-\left(y-5\right)^2\le0\)
\(\Rightarrow-125-\left(x-4\right)^2-\left(y-5\right)^2\le-125-0\)
\(\Rightarrow A\le-125\)
Dấu "=" xảy ra khi \(\begin{cases}-\left(x-4\right)^2=0\\-\left(y-5\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=4\\y=5\end{cases}\)
Vậy...
GTNN nghĩa là giá trị nhỏ nhất đó bạn. Bạn biết thì giải giúp nhé
a: \(A=x^2-6x+9+3=\left(x-3\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=3
b: \(B=\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x\)
Dấu '=' xảy ra khi x=1 và y=-2