K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2021

PTHDGD: \(\left(2m-5\right)x-m-2=-3-x\)

2 đt cắt tại 1 điểm trên trục tung nên x=0

\(\Leftrightarrow-m-2=-3\Leftrightarrow m=1\)

Phương trình hoành độ giao điểm là:

x-2m+1=2x-3

=>-x=-3+2m-1

=>-x=2m-4

=>x=-2m+4

Để hai đường thẳng cắt nhau tại một điểm nằm ở phía trên trục hoành thì y>0

=>2x-3>0

=>x>3/2

18 tháng 2 2022

tim m ma bn

AH
Akai Haruma
Giáo viên
11 tháng 1 2022

Lời giải:

Để hai đường thẳng song song nhau thì:

\(\left\{\begin{matrix} k+3=4\\ m+1\neq 3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m\neq 1\end{matrix}\right.\)

Để hai đt cắt nhau thì: \(\left\{\begin{matrix} k+3\neq 4\\ m\in\mathbb{R}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k\neq 1\\ m\in\mathbb{R}\end{matrix}\right.\)

Để hai đt trùng nhau thì: \(\left\{\begin{matrix} k+3=4\\ m+1=3-m\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} k=1\\ m=1\end{matrix}\right.\)

Để hai đt cắt nhau tại 1 điểm trên trục tung thì:

PT hoành độ giao điểm $(k+3)x+m+1=4x+3-m$ nhận $x=0$ là nghiệm 

$\Leftrightarrow x(k-1)+(2m-2)=0$ nhận $x=0$ là nghiệm 

$\Leftrightarrow 2m-2=0$

$\Leftrightarrow m=1$

Vậy $m=1$ và $k\in\mathbb{R}$ bất kỳ.

Để 2 đt vuông góc thì $(k+3).4=-1$ và $m$ bất kỳ 

$\Leftrightarrow k=\frac{-13}{4}$ và $m$ bất kỳ.

9 tháng 6 2015

bài 1: d1 cắt d2 tại 1 điểm trên trục tung => \(a\ne a';b=b'\)

<=> \(m\ne3\)và \(5-m=m-1\Leftrightarrow2m=6\Leftrightarrow m=3\)(k t/m dk) => k có m thỏa mãn để d1 cắt d2 tại 1 điểm trên trục tung.

bài 2:ĐK: m khác -1

hoành độ giao điểm A là nghiệm của pt:

\(\left(m+1\right)x^2=3x+1\Leftrightarrow\left(m+1\right)x^2-3x+1=0\)(1)

tại 1 điểm có hoành độ =2 => thay x=2 vào pt (1) ta có: \(4\left(m+1\right)-6+1=0\Leftrightarrow4m+4-6+1=0\Leftrightarrow4m=1\Leftrightarrow m=\frac{1}{4}\)(t/m đk)

=> 2 đồ thị cắt nhau tại.... bằng 2 <=> m=1/4

30 tháng 11 2017

chung minh 3 duong thang dong quy

15 tháng 4 2023

Để hai đường thing d1 và d2 song song với nhau 

=>\(\left\{{}\begin{matrix}a=a^,\\b\ne b^,\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6=-2\\m\ne3\end{matrix}\right.\)

\(\Leftrightarrow m=\mp2\)        t/m 

Vậy với m ,,, thì  d1 // d2

Theo bài ra ta có ddường thing d cắt trục ting tại điểm có tung độ bằng 2 , gọi giao điểm của d1 và Oy là A 

=> \(A_{\left(0,2\right)}\)

=> A \(\in\) \(\left(d1\right)y=\left(m^2-6\right)x+m\)

=> Thay x = 0 và y = 2 vào phương trình đường thẳng d1 ta được :

m= 2 

Vậy ,,,,