Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tính
a) 253 : 52 = (52)3 : 52 = 56 : 52 = 54 = 625
\(b)\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^6=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^9\) d) 9 . 32 . \(\dfrac{1}{81}\) . 32 = 32 . 32 . \(\dfrac{1}{3^4}\) . 32 = 9
2) Tìm x thuộc Q, biết:
a) 3x + 2 = 27
=> 3x + 2 = 33
x + 2 = 3
x = 3 - 2
x = 1
b) \(\left(\dfrac{1}{2}x-3\right)^4=81\)
\(\Rightarrow\left(\dfrac{1}{2}x-3\right)^4=3^4\)
\(\dfrac{1}{2}x-3=3^{ }\)
\(\dfrac{1}{2}x=3+3\)
\(\dfrac{1}{2}x=9\)
\(x=9:\dfrac{1}{2}\)
\(x=18\)
c) \(\left(x-\dfrac{1}{2}\right)^3=-27\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(-3\right)^3\)
\(x-\dfrac{1}{2}=-3\)
\(x=-3+\dfrac{1}{2}\)
\(x=\dfrac{-5}{2}\)
d) 5 . 5x + 1 = 125
5x + 1 = 125 : 5
5x + 1 = 25
5x + 1 = 52
x + 1 = 2
x = 2 - 1
x = 1.
\(a,\frac{(-10)^5}{3\cdot(-6)^4}=\frac{(-2\cdot5)^5}{3\cdot(-2\cdot3)^4}=\frac{(-2)^5\cdot5^5}{3\cdot(-2)^4\cdot3^4}=\frac{(-2)^5\cdot5^5}{(-2)^4\cdot3^5}=-2\cdot\frac{5^5}{3^5}=\frac{-6250}{243}\)
\(b,\frac{2^{15}\cdot9^4}{6^6\cdot8^3}=\frac{\left[2^3\right]^5\cdot\left[3^2\right]^4}{\left[3\cdot2\right]^6\cdot\left[2^3\right]^3}=\frac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}=\frac{2^{15}\cdot3^8}{3^6\cdot2^{15}}=\frac{3^8}{3^6}=3^2=9\)
\(c,\left[1+\frac{2}{3}-\frac{1}{4}\right]\cdot\left[\frac{4}{5}-\frac{3}{4}\right]^2\)
\(=\left[\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right]\cdot\left[\frac{16}{20}-\frac{15}{20}\right]^2\)
\(=\frac{17}{12}\cdot\left[\frac{1}{20}\right]^2=\frac{17}{12}\cdot\frac{1^2}{20^2}=\frac{17}{12}\cdot\frac{1}{400}=\frac{17}{4800}\)
\(d,2^3+3\cdot\left[\frac{1}{2}\right]^0+\left[(-2)^2:\frac{1}{2}\right]\)
\(=8+3\cdot\frac{1^0}{2^0}+\left[4:\frac{1}{2}\right]\)
\(=8+3\cdot1+8=8+3+8=19\)
a) 814=(23)14=23*14=242
1610=(8*2)10=810*210=(23)10*210=230*210=240
Vì 242 > 240 nên 814 > 1610
b) 233=(23)11=811
322=(32)11=911
Vì 811 < 911 nên 233 < 322
a) \(\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5=\left(\frac{3}{5}\right)^{15}:\left(\left(\frac{3}{5}\right)^2\right)^5=\left(\frac{3}{5}\right)^{15}:\left(\frac{3}{5}\right)^{10}=\left(\frac{3}{5}\right)^5\)
b) \(5-\left(-\frac{5}{11}\right)^0+\left(\frac{1}{3}\right)^2:3=5-1+\frac{1}{9}:3=4+\frac{1}{27}=4\frac{1}{27}\)
c) \(2^3+3.\left(\frac{1}{2}\right)^0+\left(-2\right)^2:\frac{1}{2}.8=8+3.1+4:\frac{1}{2}.8=8+3+64=75\)
d) \(\left(-1\right)^{-1}-\left(-\frac{3}{5}\right)^0+\left(\frac{1}{2}\right)^{2:2}=-1-1+\left(\frac{1}{2}\right)^1=-2+\frac{1}{2}=-\frac{3}{2}\)
Câu 1:
a) 2225 và 3150
Ta có:2225=(29)25=51225
3150=(36)25=72925
Vì 51225<72925
Suy ra: 2225<3150
Câu 2:
a)\(25^3:5^2=\left(5^2\right)^3:5^2=5^6:5^2=5^4\)
b)\(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}=\left(\frac{3}{7}\right)^9\)
c)\(3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2=3+\frac{1}{4}:2=3+\frac{1}{8}=\frac{25}{8}\)
Câu 3:
a)\(9.3^3.\frac{1}{81}.3^2=3^2.3^3.3^2.\left(\frac{1}{3^4}\right)=3^7:3^4=3^3\)
b)\(4.2^5:\left(2^3.\frac{1}{16}\right)=2^2.2^5:\left(2^3.\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)
c)\(3^2.2^5.\left(\frac{2}{3}\right)^2=288.\frac{4}{9}=2^7\)
d)\(\left(\frac{1}{3}\right)^3.\frac{1}{3}.9^2=\left(\frac{1}{3}\right)^4.\left(3^2\right)^2=3^4.\left(\frac{1}{3}\right)^4=3^4:3^4=1\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a) A = 3² . 1/243 . 81² . 1/3²
= 3² . 1/3⁵ . (3⁴)² . 1/3²
= 3² . 1/3⁷ . 3⁸
= 3¹⁰ . 1/3⁷
= 3³
= 27
b) B = (4.2⁵) : (2³ . 1/6)
= (4.32) : (8 . 1/6)
= 128 : 4/3
= 96
c) C = (-1/3)³.(-1/3)².(-1/3)
= (-1/3)³⁺²⁺¹
= (-1/3)⁶
= 1/729
d) D = (-1/3)⁻¹ - (-6/7)⁰ + (1/2)² : 2
= -3 - 1 + 1/4 : 2
= -4 + 1/8
= -31/8
cảm ơn