Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x=7-20=-13
b: =>x=-18+12=-6
c: =>x=9 hoặc x=-6
d: =>x=0 hoặc x=4
e: =>6-x=13-3+14=24
=>x=-18
Câu g và h đề thiếu rồi bạn
a, Vì \(x>0\Rightarrow\)x là số nguyên dương, Vì \(8⋮x\Rightarrow x=Ư\left(8\right)=\left\{1;2:4;8\right\}\)
Vậy \(x=\left\{1;2;4;8\right\}\)
b, Vì \(x>0\Rightarrow\)x là số nguyên dương, Vì \(12⋮x\Rightarrow x=Ư\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Vậy \(x=\left\{\dots\right\}\)
c, Vì \(x⋮-8,x⋮12\Rightarrow x=UC\left(-8,12\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Vậy \(x=\left\{\dots\right\}\)
a) Ta có: B(12) = {0;12;24;36;48;60;...}
x ∈ B(12) và 20 ≤ x ≤ 50 nên x = 24;36;48.
b) x ∈ Ư(20) và x > 8.
Ta có: x ∈ Ư(20) = {1;2;3;4;5;10;20;...}
x ∈ Ư(20) và x > 8 nên x = 10; 20.
c) Ta có: x ⋮ 5 nên x là bội của 15
B(15) = {0;15;30;45;60...} vì 0 < x ≤ 40 nên x = 15; 30.
d) Ta có: 16 ⋮ x nên x là ước của 16.
Ư(16) = {1;2;4;8;16}. Vậy x = 1,2,4,8,16.
e) Ta có: B(18) = {0;18;36;54;72;90;108}
Vì 9 < x < 120 nên x ∈ {18;36;54;72;90;108}
f) Vì 6 ⋮ (x – 1) nên (x – 1) là ước của 6.
=> (x – 1) ∈ {1;2;3;6} => x ∈ {2;3;4;7}
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3