K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

Đặt:\(7a=3b=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{k}{7}\\b=\dfrac{k}{3}\end{matrix}\right.\)

\(\Rightarrow\dfrac{k}{7}.\dfrac{k}{3}=20\Rightarrow\dfrac{k^2}{21}=20\Rightarrow k^2=420\Rightarrow k=\pm\sqrt{420}\)

Xét: \(k=\sqrt{420}\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\)

Xét: \(k=-\sqrt{420}\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{-\sqrt{420}}{7}\\b=\dfrac{-\sqrt{420}}{3}\end{matrix}\right.\)

b) Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)

\(=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\)

\(\Rightarrow\left\{{}\begin{matrix}a=100.2=200\\b=100.3=300\\c=100.4=400\end{matrix}\right.\)

c) Đặt: \(\dfrac{a}{4}=\dfrac{b}{7}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\)

\(\Rightarrow4k.7k=112\)

\(\Rightarrow28k^2=112\)

\(k^2=4\Rightarrow k=\pm2\)

Xét: \(k=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=2.4=8\\b=2.7=14\end{matrix}\right.\)

Xét:\(k=-2\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2.4=-8\\c=-2.7=-14\end{matrix}\right.\)

24 tháng 7 2017

\(\text{a) }7a=3b\text{ và }ab=20\\ \text{Đặt }7a=3b=k\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{7}k\\b=\dfrac{1}{3}k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=20\\ \Leftrightarrow\left(\dfrac{1}{7}k\right)\left(\dfrac{1}{3}k\right)=20\\ \Leftrightarrow\left(\dfrac{1}{7}\cdot\dfrac{1}{3}\right)\left(k\cdot k\right)=20\\ \Leftrightarrow\dfrac{1}{21}k^2=20\\ \Leftrightarrow k^2=420\\ \Leftrightarrow k=\sqrt{420}\\ \text{Từ }k=\sqrt{420}\text{ suy ra : }\left\{{}\begin{matrix}a=\dfrac{1}{7}\cdot\sqrt{420}\\b=\dfrac{1}{3}\cdot\sqrt{420}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{\sqrt{420}}{7}\\b=\dfrac{\sqrt{420}}{3}\end{matrix}\right.\\ \text{Vậy }a=\dfrac{\sqrt{420}}{7};b=\dfrac{\sqrt{420}}{3}\)

\(\text{b) }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\text{ và }a+b-c=100\\ \text{ Theo bài ra ta có : }\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\\ a+b-c=100\\ \text{Áp dụng tính chất dãy tỉ số bằng nhau ta được : }\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b-c}{2+3-4}=\dfrac{100}{1}=100\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=100\\\dfrac{b}{3}=100\\\dfrac{c}{4}=100\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=200\\b=300\\c=400\end{matrix}\right.\\ \text{Vậy }a=200;b=300;c=400\)

\(\text{c) }\dfrac{a}{4}=\dfrac{b}{7}\text{ và }ab=112\\ \text{Đặt }\dfrac{a}{4}=\dfrac{b}{7}=k\Rightarrow\left\{{}\begin{matrix}a=4k\\b=7k\end{matrix}\right.\left(1\right)\\ \text{Từ }\left(1\right)\text{ suy ra : }\\ ab=112\\ \Leftrightarrow4k\cdot7k=112\\ \Leftrightarrow28k^2=112\\ \Leftrightarrow k^2=4\\ \Leftrightarrow k=2\\ \text{Từ }k=2\Rightarrow\left\{{}\begin{matrix}a=4\cdot2\\b=7\cdot2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8\\b=14\end{matrix}\right.\\ \text{Vậy }a=8;b=14\)

ý a) sao đang \(a,b,c\) lại thành \(x,y,z\) ? :DD??

b: Đặt \(\dfrac{a}{5}=\dfrac{b}{7}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\)

Ta có: ab=140

nên \(35k^2=140\)

\(\Leftrightarrow k^2=4\)

Trường hợp 1: k=2

\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=10\\b=7k=14\end{matrix}\right.\)

Trường hợp 2: k=-2

\(\Leftrightarrow\left\{{}\begin{matrix}a=5k=-10\\b=7k=-14\end{matrix}\right.\)

23 tháng 12 2020

a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)

\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)

Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)

nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)

mà a+b+c=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)

Vậy: \(a=\dfrac{16}{35}\)\(b=\dfrac{24}{35}\)\(c=\dfrac{6}{7}\)

b) Ta có: 2a=3b=5c

nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)

mà a+b-c=3

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)

Do đó: 

\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)

Vậy: \(a=\dfrac{45}{19}\)\(b=\dfrac{30}{19}\)\(c=\dfrac{18}{19}\)

12 tháng 11 2021

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=k\Leftrightarrow a=2k;b=3k\)

\(ab=24\Leftrightarrow6k^2=24\Leftrightarrow k^2=2\\ \Leftrightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=4;b=6\\a=-4;b=-6\end{matrix}\right.\)

12 tháng 11 2021

Ta có :

\(\dfrac{a}{2}=\dfrac{b}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\end{matrix}\right.\)

mà \(ab=24\)

\(\Rightarrow2k.3k=24\)

\(\Rightarrow6k^2=24\)

\(\Rightarrow k^2=2^2\)

\(\Rightarrow k=\left\{{}\begin{matrix}2\\-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=\dfrac{b}{3}=2\\\dfrac{a}{2}=\dfrac{b}{3}=-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4;b=6\\a=-4;b=-6\end{matrix}\right.\)

1 tháng 11 2021

a

21 tháng 2 2023

b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)

\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)

Vậy (a,b,c) = (18,16,15) 

12 tháng 12 2022

a: a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)

b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)

d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)

22 tháng 11 2021

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\\ \Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)

NV
5 tháng 11 2021

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=5\\\dfrac{b}{3}=5\\\dfrac{c}{4}=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)