K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

A=(7+7^2)+(7^3+7^4)+...+(7^2015+7^2016)

=(7+7^2)+7^2.(7+7^2)+...+7^2014.(7+7^2)

=56+ 7^2.56+ ....+7^2014.56

=56.(1+7^2+...+7^2014)

=>A chia hết cho 56

8 tháng 10 2016

A=7+72+73+...+72016

=(7+72)+(73+74)+...+(72015+72016)

=7.(1+7)+73.(1+8)+...+72015.(1+7)

=7.8+73.8+...+72015.8

=8.(7+73+...+72015) chia hết cho 8 (đpcm)

A=7+72+73+...+72016

=(7+72+73)+...+(72014+72015+72016)

=7.(1+7+72)+...+72014.(1+7+72)

=7.57+...+72014.57

=57.(7+...+72014) chia hết cho 57 (đpcm)

11 tháng 9 2016

\(A=7+7^2+7^3+...+7^{2016}\)

\(A=\left(7+7^2+7^3\right)+\left(7^4+7^5+7^6\right)+...+\left(7^{2014}+7^{2015}+7^{2016}\right)\)

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2014}\left(1+7+7^2\right)\)

\(A=7.57+7^4.57+...+7^{2014}.57\)

\(A=\left(7+7^4+...+7^{2014}\right).57⋮57\) ( đpcm ) 

11 tháng 9 2016

Ta có :

\(A=7\left(1+7+7^2\right)+.....+7^{2014}\left(1+7+7^2\right)\)

\(\Rightarrow A=7.57+....+7^{2014}.57\)

\(\Rightarrow A=57.\left(7+....+7^{2014}\right)\)

=> A chia hêt cho 57

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

21 tháng 7 2016

              A = 7 + 72 + 73 + .... + 72016        có (2016 - 1) : 1 + 1 = 2016 số hạng

             A = (7 + 72 + 73) + ... + (72014 + 72015 + 72016)

            A = 7 . (1 + 7 + 72) + .... + 72014 . (1 + 7 + 72)

            A = 7 . (1 + 7 + 49) + .... + 72014 . (1 + 7+ 49)

           A = 7 . 57 + ... + 72014 . 57

           A = 57 . (7 + ... + 72014) chia hết cho 57

         => A chia hết cho 57 (ĐPCM)

        Ủng hộ mk nha !!! ^_^

21 tháng 7 2016

A = 7 + 72 + 7+.....+ 72016

A = (7 + 72 + 73) + (74 + 75 + 76) +....+ (72014 + 72015 + 72016)

A = 7(1+7+72) + 74(1+7+72) +....+ 72014(1+7+72)

A = 7.57 + 74.57 +.....+ 72014.57

A = (7 + 74 +....+ 72014).57 chia hết cho 57 (Đpcm)

17 tháng 10 2015

S = \(7+7^2+.............+7^{2016}\)

\(7S=7^2+7^3+...........+7^{2017}\)

\(7S-S=\left(7^2-7^2\right)+\left(7^3-7^3\right)+...........+7^{2017}-7\)

\(S=\frac{7^{2017}-7}{6}\)

b) \(S=\left(7+7^2+7^3+7^4\right)+.............+\left(7^{2013}+7^{2014}+7^{2015}+7^{2016}\right)\)

\(S=35.2^4.5+35.2^4.5.7^4+.........+35.2^4.5.7^{2012}\)

\(S=35.2^4.5.\left(1+7^4+7^8+............+7^{2012}\right)\)

Vậy chia hết cho 35          

17 tháng 10 2015

đề đúng không vậy Nguyễn Tuấn Tài

11 tháng 11 2019

a. Câu hỏi của trương bảo ánh - Toán lớp 6 - Học toán với OnlineMath

b. Gọi: \(\left(5n+2;5n+3\right)=d\)

=> \(\hept{\begin{cases}5n+3⋮d\\5n+2⋮d\end{cases}}\)

=> \(\left(5n+3\right)-\left(5n+2\right)⋮d\)

=> \(1⋮d\)

=> d = 1.

Vậy ( 5n +2 ; 5n +3 ) = 1 hay 5n +2 và 5n + 3 nguyên tố cùng nhau.