Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2x\left(x-5\right)-x\left(2x+3\right)=25\)
\(\Rightarrow2x^2-10x-2x^2-3x=25\)
\(\Rightarrow-13x=25\Rightarrow x=\dfrac{-25}{13}\)
b, \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\dfrac{5}{2}\)
\(\Rightarrow3y^3-y^2+y-3y^2+y-1+4y^2-3y^3=\dfrac{5}{2}\)
\(\Rightarrow2y-1=\dfrac{5}{2}\Rightarrow2y=\dfrac{7}{2}\Rightarrow y=\dfrac{7}{4}\)
c, \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2+x-x-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow-5x=3\Rightarrow x=\dfrac{-3}{5}\)
\(A=2x^2+x-5y+4\)
Thay x = 1/2 ; y = -1/52 vào biểu thức trên ta được :
\(=2.\frac{1}{4}+\frac{1}{2}-5.\frac{-1}{52}+4=1+\frac{5}{52}+4\)
\(=5+\frac{5}{52}=\frac{260}{52}+\frac{5}{52}=\frac{265}{52}\)
\(B=2x^2-3y^2+4z^3\)
Thay x = 2 ; y = z = -23 vào biểu thức trên ta được :
\(=2.4-3.169+4.2197=8-507+8788=8289\)
tương tự với c, bài này ko khó, tại số to nên tính có khi nhầm lẫn vài chỗ thôi.
Bài 1:
a) Ta có: \(2x=5y.\)
=> \(\frac{x}{y}=\frac{5}{2}\)
=> \(\frac{x}{5}=\frac{y}{2}\) và \(x.y=90.\)
Đặt \(\frac{x}{5}=\frac{y}{2}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
Có: \(x.y=90\)
=> \(5k.2k=90\)
=> \(10k^2=90\)
=> \(k^2=90:10\)
=> \(k^2=9\)
=> \(k=\pm3.\)
TH1: \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)
TH2: \(k=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).5=-15\\y=\left(-3\right).2=-6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(15;6\right),\left(-15;-6\right).\)
e) Ta có: \(\frac{x}{y}=\frac{4}{5}.\)
=> \(\frac{x}{4}=\frac{y}{5}\) và \(x.y=20.\)
Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)
Có: \(x.y=20\)
=> \(4k.5k=20\)
=> \(20k^2=20\)
=> \(k^2=20:20\)
=> \(k^2=1\)
=> \(k=\pm1.\)
TH1: \(k=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.4=4\\y=1.5=5\end{matrix}\right.\)
TH2: \(k=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-1\right).4=-4\\y=\left(-1\right).5=-5\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(4;5\right),\left(-4;-5\right).\)
Chúc bạn học tốt!
Bài tập 2:
a/ A + (x2 - 2xy + y2) = x2 +2xy + y2
=> A = (x2 + 2xy + y2) - (x2 - 2xy + y2)
=> A = x2 + 2xy + y2 - x2 + 2xy - y2
=> A = (x2 - x2) + (2xy + 2xy) + (y2 - y2)
=> A = 0 + (2 + 2). xy + 0
=> A = 4xy
b/ B - (x2y-3xy2 +5) = 3x2 + 1 + 4x2y
=> B = (3x2 + 1 + 4x2y) + (x2y-3xy2 +5)
=> B = 3x2 + 1 + 4x2y + x2y - 3xy2 + 5
=> B = (1 + 5) + (4x2y - x2y) + 3x2 - 3xy2
=> B = 6 + 3x2y + 3x2 - 3xy2
D - 9x + 2y3 - 7x3y2 - 4x5y + 1 = 0
=> D = 0 + 9x + 2y3 - 7x3y2 - 4x5y + 1
=> D = 9x + 2y3 - 7x3y2 - 4x5y + 1
P.s: Lần sau bạn đăng 1 câu hỏi/ bài đăng thôi nhé! Và nhớ dùng công thức trực quan!
a) |5x - 1| - x = 2x + 3
<=> |5x - 1| = 2x + 3 + x
<=> |5x - 1| = 3x + 3
<=> 5x - 1 = 3x + 3 hoặc 5x - 1 = -(3x + 3)
5x - 1 - 3x = 3 5x - 1 + 3x = -3
2x - 1 = 3 8x - 1 = -3
2x = 3 + 1 8x = -3 + 1
2x = 4 8x = -2
x = 2 x = -2/8 = -1/4
=> x = 2 hoặc x = -1/4
b) Ta có: |2x + 1| \(\ge\)0 \(\forall\)x
|x - 3| \(\ge\)0 \(\forall\)x
|2x+ 3| \(\ge\)0 \(\forall\)x
=> |2x + 1| + |x - 3| + |2x + 3| \(\ge\)0 \(\forall\)x
=> x - 5 \(\ge\)0 \(\forall\)x => x \(\ge\)5 \(\forall\)x
Với x \(\ge\)5
=> 2x + 1 + x - 3 + 2x + 3 = x - 5
=> 4x + 1 = x - 5
=> 4x - x = -5 - 1
=> 3x = -6
=> x = -2 (ktm)
Vậy ko có giá trị thõa mãn