K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

A = 5 + 52 + 53 + ... + 512

A = (5 + 52) + (53 + 54) + ... + (511 + 512)

A = 30 + 52(5 + 52) + ... + 510(5 + 52)

A = 30 + 52.30 + ... + 510.30

A = 30(1 + 52 + ... + 510)

Vì  30(1 + 52 + ... + 510) chia hết cho 30 => A chia hết cho 30 (đpcm)

A = 5 + 52 + 53 + ... + 512

A = (5 + 52 + 53) + ... + (510 + 511 + 512)

A = 5(1 + 5 + 52) + ... + 510(1 + 5 + 52)

A = 5.31 + ... + 510.31

A = 31(5 + ... + 510)

Vì 31(5 + ... + 510) chia hết cho 31 => A chia hết cho 31 (đpcm)

13 tháng 11 2018

Ta có :

 \(A=5+5^2+5^3+...+5^{12}\)

\(A=(5+5^2+5^3)+...+(5^{10}+5^{11}+5^{12})\)

\(A=5(1+5+5^2)+...+5^{10}(1+5+5^2)\)

\(A=5.31+...+5^{10}.31\)

\(A=(5+...+5^{10}).31\) chia hết cho 31

Ta có ;

\(A=5+5^2+5^3+...+5^{12}\)

\(A=5(1+5+5^2+...+5^{11})\) chia hết cho 5    ( 1 )

Ta lại có :

\(A=5+5^2+5^3+...+5^{12}\)

\(A=(5+5^2)+(5^3+5^4)+...+(5^{11}+5^{12})\)

\(A=5(1+5)+5^3(1+5)+...+5^{11}(1+5)\)

\(A=5.6+5^3.6+...+5^{11}.6\)

\(A=(5+5^3...+5^{11}).6\) chia hết cho 6     ( 2 )

Từ ( 1 ) và  ( 2 ) ta có ;

\(A=5+5^2+5^3+...+5^{12}\) chia hết cho 5 và 6 

=> \(A=5+5^2+5^3+...+5^{12}\)chia hết cho 30

\(A=5\left(1+5\right)+...+5^{11}\left(1+5\right)\)

\(=6\cdot\left(5+...+5^{11}\right)⋮30\)

21 tháng 12 2019

a, Ta có:

2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100

=  2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100

= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4

=  2 . 31 + 2 6 . 31 + . . . + 2 96 . 31

=  2 + 2 6 + . . . + 2 96 . 31  chia hết cho 31

b, Ta có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5

=  5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6

=  ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6  chia hết cho 6

Ta lại có:

5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150

=  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150  (có đúng 25 nhóm)

[ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... +  [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]

=  [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... +  [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]

=  ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... +  ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )

=  ( 5 + 5 2 + 5 3 ) . 126 +  ( 5 7 + 5 8 + 5 9 ) . 126 +  ... + ( 5 145 + 5 146 + 5 147 ) . 126

= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... +  ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.

Vậy  5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150  vừa chia hết cho 6, vừa chia hết cho 126

 

6 tháng 11 2023

Chịu 🤭🤭🤭

17 tháng 10 2019

29 tháng 10 2023

Hệ số của đơn thức 3x mũ 2y 4xy mũ 3

29 tháng 10 2023

\(B=5+5^2+5^3+...+5^{88}+5^{89}+5^{90}\)

\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)

\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{88}\left(1+5+5^2\right)\)

\(=31\left(5+5^4+...+5^{88}\right)⋮31\)

10 tháng 10 2021

giúp mình vs mình đang cần gấp T-T

10 tháng 10 2021

Đặt \(A=1+5+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)

\(\Rightarrow A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{399}+5^{400}+5^{401}\right)+\left(5^{402}+5^{403}+5^{404}\right)\)

\(\Rightarrow A=31.1+31.5^3+...+31.5^{402}\)

\(\Rightarrow A=31\left(1+5^3+5^6+...+5^{402}\right)\)

\(\Rightarrow A⋮31\left(đpcm\right)\)

DT
23 tháng 9 2023

\(\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\\ =31+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\\ =31+5^3.31+...+5^{402}.31\\ =31.\left(1+5^3+...+5^{402}\right)⋮31\left(DPCM\right)\)

23 tháng 9 2023

dpcp là gì vậy ạ

25 tháng 12 2022

M=(5+5^2)+...+(5^79+5^80)

M=30.1+...+5^78+(5^1+5^2)

M=30(1+...+5^78) /30

VẬY M / 30

 

25 tháng 12 2022

\(M=5+5^2+5^3+....+5^{80}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)

\(=30+5^3.\left(5+5^2\right)+...+5^{70}.\left(5+5^2\right)\)

\(=1.30+5^3.30+...+5^{70}.30\)

\(=\left(1+5^3+...+5^{70}\right).30\)

\(=>M⋮30\)

M=(5+5^2)+5^2(5+5^2)+...+5^78(5+5^2)

=30(1+5^2+...+5^78) chia hết cho 30

28 tháng 12 2021

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

29 tháng 12 2021

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

14 tháng 11 2023

Đễ