K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đỡ mik vớiCâu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc  c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abcCâu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :a/ 6x2y2-4y4b/ -6x2y2+4y4c/-6x2y2-4y4d/ 18x4-4y4Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:a/ 0      b/ 40x   c/ -40x     d/ Kết quả khácCâu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7)...
Đọc tiếp

đỡ mik với

Câu 10: Tính (a+b+c)(a2+b2+c2-ab-bc-ca) bằng :
a/a3+b3+c3 –abc    b/ a3+b3+c3 +3abc 

 c/ a3+b3+c3 –3abc   d/ a3+b3+c3 +abc

Câu 11: Tính và thu gọn : 3x2(3x2-2y2)-(3x2-2y2)(3x2+2y2) dược kết quả là :

a/ 6x2y2-4y4
b/ -6x2y2+4y4
c/-6x2y2-4y4
d/ 18x4-4y4

Câu 12: Biểu thức rút gọn và khai triển của R là :R=(2x-3).(4+6x)-(6-3x)(4x-2) là:
a/ 0      b/ 40x   c/ -40x     d/ Kết quả khác
Câu 13: Cho biểu thức : (3x-5)(2x+11)-(2x+3)(3x+7) kết quả thực hiện phép tính là
a/ 6x2-15x -55          b/ -43x-55      c/ K phụ thuộc biến x       d/ Kết qủa khác
Câu 14: Tính (x-y)(2x-y) ta được :
a/ 2x2+3xy-y2
b/ 2x2-3xy+y2
c/ 2x2-xy+y2
d/ 2x2+xy –y

Câu 15: Tính (x2
-2xy+y2
).(x-y) bằng :

a/-x
3
-3x2y+3xy2
-y
3
b/x3
-3x2y+3xy2
-y
3
c/x3
-3x2y-3xy2
-y
3
d/-x3-3x2y+3xy2+y3

Câu 16: Biểu thức rút gọn của (2x+y)(4x2
-2xy+y2
) là :

a/ 2x3
-y
3
b/ x3
-8y3
c/ 8x3
-y
3
d/8x3+y3

Câu 17: Tính (x-2)(x-5) bằng
a/ x2+10 b/ x2+7x+10 c/ x2

-7x+10 d/ x2
-3x+10

Câu 18: Cho A=3.(2x-3)(3x+2)-2(x+4)(4x-3)+9x(4-x). Để A có giá trị bằng 0 thì x
bằng :
a/ 2 b/ 3 c/ Cả a,b đều đúng d/ Kết quả khác
Câu 19: Tìm x biết (5x-3)(7x+2)-35x(x-1)=42. x bằng
a/ -2 b/
1
2
c/ 2 d/ Kết quả khác
Câu 20: Tìm x biết (3x+5)(2x-1)+(5-6x)(x+2)=x . giá trị x bằng
a/ 5 b/ -5 c/ -3 d/ Kết quả khác
câu 21: Giá trị của biểu thức A =(2x+y)(2z+y)+(x-y)(y-z) với x=1;y=1 ;z=-1 là
a/ 3 b/ -3 c/2 d/-2
Câu 22: Giá trị của x thoả mãn (10x+9).x-(5x-1)(2x+3) =8 là
a/1,5 b/ 1,25 c/ -1,25 d/3
Câu 23: Giá trị x thoả mãn ;x(x+1)(x+6)-x3 =5x là

a/ 0 b/17− c/ 0 hoặc17d/ 0 hoặc17−

Câu 25: Giá trị nhỏ nhất của y=(x-3)2 +1 là
a/ khi x=3 b/3 khi x=1 c/ 0 khi x=3 d/ không có GTNN trên TXĐ
Câu 26: Chọn câu sai
Với mọi số tự nhiên n,giá trị của biểu thức (n+7)2-(n-5)2chia hết cho

a/ 24 b/16 c/8 d/ 6
Câu 27: Rút gọn biểu thức (x+y)2 +(x-y)2-2x2ta được kết quả là :

a/ 2y b/2y2c/-2y2d/ 4x+2y2
Câu 28: Với mọi giá trị của biến số giá trị của biểu thức 16x4-40x2y3 +25y6là 1 số
a/ dương b/Không dương c/ âm d/ không âm
Câu 29: Thực hiện phép tính :( 5x+4)2 +(1-5x)2 +2(5x+4)(1-5x) ta được
a/ (x+5)2
b/ (3+10x)2

c/ 9 d/25

Câu 30: Thực hiện phép tính (2x-3)2 +(3x+2)2 +13(1-x)(1+x) ta được kết quả là :
a/ 26x2
b/ 0 c/-26 d/26
Câu 31: Chọn kết quả đúng ; (2x+3y)(2x-3y) bằng
a/ 4x2-9y2
b/ 2x2-3y2
c/ 4x2+9y2

d/ 4x-9y

Câu 32: Tính Tính (x+1/4)^2ta được :

a/ x2-12x + 1/4

b/ x2 +12x + 18
c/ x2 +12x + 116
d/ x2-12x -1/4

Câu 33: Với mọi x thuộc R phát biểu nào sau đây là sai
a/ x2-2x+3>0 b/ 6x-x2-10<0 c/ x2 –x-100<0 d/ x2 –x+1>0

9
4 tháng 12 2021
1÷+×/=÷#$%!=
4 tháng 12 2021

chúc mng lm bài được

17 tháng 7 2021

a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

 

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)

8 tháng 12 2019

Bài làm

a) xy + y2 - x - y

= ( xy + y2 ) - ( x + y )

= y( x + y ) - ( x + y )

= ( x + y )( y - 1 )


b) 25 - x2 + 4xy - 4y2

= 25 - ( x2 - 4xy + 4y2 )

= 25 - ( x - 2y )2

= ( 5 - x + 2y )( 5 + x - 2y )

c) xy + xz - 2y - 2z

= ( xy + xz ) - ( 2y + 2z )

= x( y + z ) - 2( y + z )

= ( y + z )( x - 2 )


d) x2 - 6xy + 9y2 - 25z2

= ( x2 - 6xy + 9y2 ) - 25z2

= ( x - 3y )2 - 25z2

= ( x - 3y - 5z )( z - 3y + 5z )


e) 3x2 - 3y2 - 12x + 12y

= 3( x - y )( x + y ) - 12( x - y )

= ( x - y )[ 3( x + y ) - 12 ]

f) 4x3 + 4xy2 + 8x2y - 16x

= 4x( x2 + y2 + 2xy - 4 )

= 4x[ ( x + y)2 - 4 ]

= 4x( x + y - 2 )( x + y + 2 )


g) x2 - 5x + 4

= x2 - x - 4x + 4

= x( x - 1 ) - 4( x - 1 )

= ( x - 1 )( x - 4 )


h) x4 + 5x2 + 4

= x4 + x2 + 4x2 + 4

= x2( x2 + 1 ) + 4( x2 + 1 )

= ( x2 + 1 )( x2 + 4 )


i) 2x2 + 3x - 5

= 2x2 - 5x + 2x - 5

= 2x( x + 1 ) - 5( x + 1 )

= ( x + 1 )( 2x - 5 )


k) x3 - 2x2 + 6x - 5 ( không biết làm )
l) x2 - 4x + 3

= ( x2 - 4x + 4 ) - 1

= ( x - 2 )2 - 1

= ( x - 3 )( x - 1 )

# Học tốt #

28 tháng 10 2017

a, \(x^4+2x^2+1-x^2\)

\(\left(x^2+1\right)^2-x^2\)

\(\left(x^2+x+1\right)\left(x^2-x+1\right)\)

b, \(x^4+x^2+1\)

\(x^4+2x^2+1-x^2\)

= .. ( như phần a )

c, \(y^4+64\)

\(\left(y^2+8\right)\left(y^2-8\right)\)

d, \(4xy+3z-12y-xz\)

\(=4y\left(x-3\right)-z\left(x-3\right)\)

\(=\left(x-3\right)\left(4y-z\right)\)

e, \(x^2-4xy+4y^2-z^2+6z-9\)

\(=\left(x-2y\right)^2-\left(z-3\right)^2\)

g, \(x^2-4xy+5x+4y^2-10y\)

\(=\left(x^2-4xy+4y^2\right)+\left(5x-10y\right)\)

\(=\left(x-2y\right)^2+5\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x-2y+5\right)\)

h, \(x^2-7x+6\)

\(=x^2-6x-x+6\)

\(=x\left(x-6\right)-\left(x-6\right)\)

\(=\left(x-6\right)\left(x-1\right)\)

i, \(x^3+5x^2+6x+2\)

\(=x^3+x^2+4x^2+4x+2x+2\)

\(=x^2\left(x+1\right)+4x\left(x+1\right)+2\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+2\right)\)

28 tháng 10 2017

phần b là 6^4 nhé

25 tháng 9 2020

a, 5x(x-2) + (2-x)=0
⇔5x(x-2) - (x-2) =0
⇔(x-2)(5x-1)=0
\(\left[{}\begin{matrix}x-2=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy....
c, (x3 - x2) - 4x2 + 8x -4 =0
⇔x3 - x2 -4x2 + 8x - 4=0
⇔x2(x-1) - 4x(x-1) +4(x-1) =0
⇔(x-1) (x-2)2=0
\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy...
Phần b cậu có chép sai đề không?

25 tháng 9 2020

.chỗ đó là giải phương trình hay PTĐTTNT vậy?

22 tháng 8 2018

a) Áp dụng nhiều lần công thức \(\left(x+y\right)^3=x^3-y^3+3xy\left(x+y\right)\), ta có:

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]\)

\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(Đpcm\right)\)

b) Ta có:

\(a^3+b^3+c^3-3abc\)

\(=a^3+3ab\left(a+b\right)+b^2+c^3-3abc-3ab\left(a+b\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Mình nghĩ bằng thế này mới đúng, bạn chắc ghi sai đề rồi bucminh

22 tháng 8 2018

a) Ta có: (a + b + c)3 - a3 - b3 - c3 = [ (a + b + c)3 - a3 ] - ( b3 + c3)

= (a + b + c - a) ( a2 + b2 + c2 + 2ab + 2bc + 2ac + a2 + ab + ac + a2) - (b + c) ( b2 - bc + c3)

= (b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac) - (b + c) ( b2 - bc + c3)

= ( b + c) ( 3a2 + b2 + c2 + 3ab + 2bc + 3ac - b2 + bc - c3)

= ( b + c) ( 3a2 + 3ab + 3bc + 3ac)

= 3 (b + c) [a (a + b) + c (a + b)]

= 3 (b + c) (a + b) (a + c) (đpcm)

17 tháng 8 2018

Bạn nên tách ra hỏi từng bài sẽ có nhiều người giải hơn nhé. Mà bài 2 với 3 lỗi đề rồi, đọc chẳng hiểu đề

a(b3 - c3) + b(c- a3) + c(a- b3)

= a(b3 - c) + b( c3 - b3 + b3 - a3) + c(a3 - b3)

= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)

= a(b3 - c3) - b(b3 - c3) - [b(a3 - b3) - c(a3- b3)]

= (b3 - c3)(a - b) - (a3- b3)(b - c)

= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)

= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)

= (b - c)(a - b) [ (c2  - a2) + (bc - ab) ]

= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]

= (b - c)(a -b) [ (c - a)(c + a + b) ]

= (a- b)(b - c)(c - a)(a + b + c)

8 tháng 10 2021

\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)