K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Đề?

4 tháng 7 2018

chứng minh rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến x

 nếu ta dùng cách rút gọn biểu thức thì ta có kết quả 

A=(8a-8)x2+(2a-2)x-15a+15

còn nếu sử dụng cách Phân tích thành nhân tử  thì ta  sẽ  có kết quả là 

A=(a-1)(2x+3)(4x-5)

(tự xét )

B  = (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)

= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

hc tốt

tớ chỉ biết làm phần B thôi 

 B= (7x - 6y)×(4x + 3y) - 2×(14x + y)×(x - 9y) - 19×(13xy - 1)
= 28x^2 - 24xy + 21xy - 18y^2 - 2.(14x^2 + xy - 126xy - 9y^2) - 247xy + 19
= 28x^2 - 24xy + 21xy - 18y^2 - 28x^2 - 2xy + 252xy + 18y^2 - 247xy + 19
= 19
vậy biểu thức A ko phụ thuộc vào x, y

phần A tương tự 

28 tháng 8 2019

Violympic toán 8

20 tháng 7 2021

Cảm ơn ạhihi

7 tháng 7 2019

a) 4x - 2x + 3 - 4x.(x - 5) = 7x - 3

--> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

--> 4x2 - 2x - 4x2 + 20x - 7x = -3 - 3

--> 11x = -6

--> x = \(\frac{-6}{11}\)

b) -3x.(x - 5) + 5.(x - 1) + 3x2 = 4x

--> -3x2 + 15x + 5x - 5 + 3x2 = 4x

--> -3x + 15x + 5x + 3x2 - 4x = 5 

--> 16x = 5

--> x = \(\frac{5}{16}\)

c) 7x.(x - 2) - 5.(x - 1) = 21x2 - 14x2 + 3

--> 7x2 - 14x - 5x + 5 = 7x2 + 3 

--> 7x - 14x - 5x - 7x2  = -5 + 3 

--> -19x = -2 

--> x = \(\frac{2}{19}\)

d) 3.(5x - 1) - x.(x - 2) + x2 - 13x = 7

--> 15x - 3 - x2 + 2x + x2 - 13x = 7

--> 15x - x2 + 2x + x2 - 13x = 3 + 7

--> 4x = 10

--> x = \(\frac{5}{2}\)

e) \(\frac{1}{5}\)x.(10x - 15) - 2x.(x - 5) = 12

--> 2x2 - 3x - 2x2 + 10x = 12

--> 7x = 12

--> x = \(\frac{12}{7}\)

~ Học tốt ~

4 tháng 7 2019

a) 4x2 - 2x + 3 - 4x(x - 5) = 7x - 3

=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3

=> 18x + 3 = 7x - 3

=> 18x - 7x = -3 - 3

=> 11x = -6

=>  x = -6/11

b) -3x(x - 5) + 5(x - 1) + 3x2 = 4x

=> -3x2 + 15x + 5x - 5 + 3x2 = 4x

=> 20x - 5 = 4x

=> 20x - 4x = 5

=> 16x = 5

=> x = 5/16

\(c,7x\left(x-2\right)-5\left(x-1\right)=21x^2-14x^2+3\)

\(\Leftrightarrow7x^2-14x-5x+5=7x^2+3\)

\(\Leftrightarrow7x^2-7x^2-19x=3-5\)

\(\Leftrightarrow-19x=-2\)

\(\Leftrightarrow x=\frac{2}{19}\)

Bài 2:

a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)

\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)

\(\Leftrightarrow-12x^2-28x-60=0\)

\(\Leftrightarrow3x^2+7x+15=0\)

\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)

Do đó: Phương trình vô nghiệm

b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)

\(\Leftrightarrow16x^2=32\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: Ta có: \(49x^2+14x+1=0\)

=>\(\left(7x+1\right)^2=0\)

hay x=-1/7

Bài 2:

a: \(\Leftrightarrow4x^2-14x+10x-35-\left(4x+3\right)^2=16\)

\(\Leftrightarrow4x^2-4x-35-16x^2-24x-9-16=0\)

\(\Leftrightarrow-12x^2-28x-60=0\)

\(\Leftrightarrow3x^2+7x+15=0\)

\(\text{Δ}=7^2-4\cdot3\cdot15=-131< 0\)

Do đó: Phương trình vô nghiệm

b: Ta có: \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)

\(\Leftrightarrow64x^4-9-64x^4+16x^2-1=22\)

\(\Leftrightarrow16x^2=32\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

c: Ta có: \(49x^2+14x+1=0\)

=>\(\left(7x+1\right)^2=0\)

hay x=-1/7