K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TL
5 tháng 7 2020

c,\(x^2-1=2x\left(x+1\right)\)

\(\left(x+1\right)\left(x-1\right)=2x\left(x+1\right)\)

\(\left(x+1\right)\left(x-1\right)-2x\left(x+1\right)=0\)

\(\left(x+1\right)\left(-x-1\right)=0\)

\(\left[{}\begin{matrix}x+1=0\\-x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\)

Vậy...

a) Ta có: \(\left(4x-10\right)\left(24+3x\right)=0\)

\(\Leftrightarrow6\left(2x-5\right)\left(8+x\right)=0\)

mà 6≠0

nên \(\left[{}\begin{matrix}2x-5=0\\8+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-8\end{matrix}\right.\)

Vậy: \(S=\left\{\frac{5}{2};-8\right\}\)

b) Ta có: \(7x-21+x\left(x-3\right)=0\)

\(\Leftrightarrow7\left(x-3\right)+x\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(7+x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\7+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

Vậy: S={3;-7}

c) Ta có: \(x^2-1=2x\left(x+1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-2x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(-x-1\right)=0\)

\(\Leftrightarrow-\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg
23 tháng 10 2016

bn ko bik lm hay sao, hay là bn chỉ đăng đề lên thôi

2 tháng 11 2016

sao nhìu... z p , đăq từq câu 1 thôy nha p

20 tháng 10 2016

Ôi trời sao lắm thế ít thôi bạn nên tách ra mà bạn cần gấp lắm à

20 tháng 10 2016

đúng rồi pn. giúp mik đc bài nào cũng đc

a) Ta có: \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)

\(\Leftrightarrow\frac{\left(2x+1\right)^2\cdot3}{15}-\frac{5\left(x-1\right)^2}{15}-\frac{7x^2-14x-5}{15}=0\)

\(\Leftrightarrow3\left(4x^2+4x+1\right)-5\left(x^2-2x+1\right)-7x^2+14x+5=0\)

\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)

\(\Leftrightarrow36x+3=0\)

\(\Leftrightarrow36x=-3\)

\(\Leftrightarrow x=\frac{-3}{36}\)

Vậy: \(x=\frac{-3}{36}\)

b) Ta có: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{201-x}{99}+\frac{203-x}{97}-\frac{205-x}{95}-3=0\)

\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)

\(\Leftrightarrow\frac{201-x+99}{99}+\frac{203-x+97}{97}+\frac{205-x+95}{95}=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\)

nên 300-x=0

\(\Leftrightarrow x=300\)

Vậy: x=300

c) Ta có: \(x^3+x^2+x+1=0\)

\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+1\ge1\ne0\forall x\)(2)

Từ (1) và (2) suy ra x+1=0

hay x=-1

Vậy: x=-1

d) Ta có: \(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\)

\(\Leftrightarrow t^2-1-24=0\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-1-5\right)\left(x^2+x-1+5\right)=0\)

\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)

\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\right]\)(3)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\ne0\forall x\)(4)

Từ (3) và (4) suy ra

\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

e) Ta có: \(\left(5x-3\right)-\left(4x-7\right)=0\)

\(\Leftrightarrow5x-3-4x+7=0\)

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy: x=-4

f) Ta có: \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-1;\frac{1}{3}\right\}\)

g) Ta có: \(x^2+6x-16=0\)

\(\Leftrightarrow x^2-2x+8x-16=0\)

\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-8\right\}\)

h) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-5;2\right\}\)

i) Ta có: \(x^2+x-2=0\)

\(\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-2\right\}\)

k) Ta có: \(3x^2+7x+2=0\)

\(\Leftrightarrow3x^2+6x+x+2=0\)

\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-2;\frac{-1}{3}\right\}\)

l) Ta có: \(4x^2-12x+5=0\)

\(\Leftrightarrow4x^2-2x-10x+5=0\)

\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)

15 tháng 2 2020

Mấy cái này chuyển vế đổi dấu là xong í mà :3

1,

16-8x=0

=>16=8x

=>x=16/8=2

2, 

7x+14=0

=>7x=-14

=>x=-2

3,

5-2x=0

=>5=2x

=>x=5/2

Mk làm 3 cau làm mẫu thôi

Lúc đăng đừng đăng như v :>

chi ra khỏi ngt nản

từ câu 1 đến câu 8 cs thể làm rất dễ,bn tham khảo bài của bn muwaa r làm những câu cn lại

4 tháng 4 2020

Giải phương trình:

a. 7x + 21 = 0

➜7x=-21

➜x=-3

Vậy...........
b. 5x – 2 = 0

➜5x=2

\(x=\frac{2}{5}\)
c. -2x + 28 = 0

➜-2x=-28

➜x=14
d. 0,25x + 1,5 = 0

➜0,25x=-1,5

➜x=-6
e. 6,2 – 3,1x = 0

➜ 3,1x=6,2

➜x=2
f. 2x + x + 12 = 0

➜3x=-12

➜x=-4
g. 5x – 2x – 24 = 0

➜3x=24

➜x=8

h. x – 5 = 3 – x

➜x+x=3+5

➜2x=8

➜x=4

k. 15 – 8x = 9 – 5x

➜ -8x+5x=9-15

➜-3x=-6

➜x=2

l. 3x + 1 = 7x – 11

➜3x-7x=-11-1

➜-4x=-12

➜x=3

m. 2x + 3 = x + 5

➜2x-x=5-3

➜x=2

n. 3x – 2 = 2x – 3

➜3x-2x=-3+2

➜x=-1

o. 2x – (3 – 5x) = 4(x + 3)

➜2x-3+5x=4x+12

➜7x-4x=12+3

➜3x=15

➜x=5

p. 10x + 3 – 5x = 4x + 12

➜5x-4x=12-3

➜x=9

q. x(x + 2) = x(x + 3)

\(x^2+2x=x^2+3x\)

\(x^2+2x-3x-x^2=0\)

➜-x=0

➜x=0

4 tháng 4 2020

2(x-3)+5x(x-1)=\(5x^2\)

➜2x-6+\(5x^2-5x=5x^2\)

➜2x+\(5x^2-5x-5x^2=6\)

➜-3x=6

➜x=-2