K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2018

a, Ta có:

\(\dfrac{4n-11}{4n-8}\)=\(\dfrac{4n-8-3}{4n-8}=\dfrac{4n-8}{4n-8}+\dfrac{-3}{4n-8}=1+\dfrac{-3}{4n-8}\)

\(\Rightarrow\)-3 \(⋮\) 4n - 8

\(\Rightarrow\)4n-8 \(\in\) Ư (-3) ={\(\pm\)1; \(\pm\)3}

Ta có bảng sau:

4n-8 -1 1 -3 3
n \(\dfrac{7}{4}\) \(\dfrac{9}{4}\) \(\dfrac{5}{4}\) \(\dfrac{11}{4}\)

Vậy x \(\in\){ \(\varnothing\) }

21 tháng 1 2018

b, Ta có:

2n + 1 \(⋮\) n + 1

\(\Rightarrow\) 2.(n+1) \(⋮\) n+1

\(\Rightarrow\)2 \(⋮\) n+1

\(\Rightarrow\) n+1 \(\in\) Ư (2) = { -1 ; -2; 1; 2 }

Ta có các trường hợp sau:

n + 1 = -1 \(\Rightarrow\) n= -2

n + 1 = -2 \(\Rightarrow\) n= -3

n + 1 = 1 \(\Rightarrow\) n= 0

n + 1 = 2 \(\Rightarrow\) n= 1

Vậy n \(\in\) { -2;-3;0;1 }

18 tháng 7 2016

a) n+3 chia hết cho n-1

=> n-1+4 chia hết cho n-1

=> 4 chia hết cho n-1 ( vì n-1 chia hết cho n-1)

=> n-1 thuộc Ư(4)={1;2;4}

Với n-1=1 => n=2

với n-1=2=>n=3

Với n-1=4=>n=5

Vậy...

b) 4n+3 chia hết cho 2n-1

=> 4n-2+5 chia hết cho 2n-1

=> 5 chia hết cho 2n-1

=> 2n-1 thuộc Ư(5)={1;5}

Với 2n-1=5=> 2n=6=> n=3

Với 2n-1=1=> 2n=2=> n=1

Vậy...

c) 4n-5 chia hết cho 2n-1

=> 4n-2+7 chia hết cho 2n-1

=> 7 chia hết cho 2n-1( vì 4n-2 chia hết cho 2n-1)

=> 2n-1 thuộc Ư(7)={1;7}

Với 2n-1=1=> n=1

Với 2n-1=7=> n=4

Vây..

k cho mk

8 tháng 11 2015

4n + 3 chia hết cho 2n + 6

4n + 12 - 9 chia hết cho 2n + 6

-9 chia hết cho 2n + 6

2n + 6 = -9 => n = -15/2

2n + 6 = -1 => n=-7/2

2n+6 = 1 => n =-5/2

2n+6=9 =>n=3/2

a: Gọi d=UCLN(2n+1;2n+3)

\(\Leftrightarrow2n+3-2n-1⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>(2n+1;2n+3)=1

b: Gọi a=UCLN(2n+7;n+3)

\(\Leftrightarrow2n+7-2n-6⋮a\)

=>a=1

=>UCLN(2n+7;n+3)=1

28 tháng 2 2021

fhehuq3

a) \(\frac{n}{2n+1}\)

Gọi \(d=ƯCLN\left(n;2n+1\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2n⋮d\\2n+1⋮d\end{cases}}\)

\(\Rightarrow\left(2n+1\right)-2n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(n;2n+1\right)=1\)

\(\Rightarrow\)Phân số \(\frac{n}{2n+1}\)là phân số tối giản

b) \(\frac{2n+3}{4n+8}\)

Gọi \(d=ƯCLN\left(2n+3;4n+8\right)\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

Vì \(2n+3=\left(2n+2\right)+1=2\left(n+1\right)+1\)(không chia hết cho 2)

\(\Rightarrow d\ne2\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+3;4n+8\right)=1\)

\(\Rightarrow\)Phân số \(\frac{2n+3}{4n+8}\)là phân số tối giản

20 tháng 2 2016

 Tìm n thuộc Z biết:

a) 4n + 1 / 2n+3

b ) 12n + 7/ 4n+7

c) 9n+4 / 3n+5