Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = ( 1 + 1/3 ) + ( 1 + 1/15 ) + ( 1 + 1/35 ) + ( 1 + 1/63 ) + .... + ( 1 + 1/9999 )
A = ( 1 + 1 + 1 + ...) + ( 1/3 + 1/15 + 1/35 + 1/63 + ....+ 1/9999 )
tự làm tiếp
1/3+13/15+33/35+31/63+.....................+9601/9603+9997/9999
\(=1-\frac{2}{3}+1-\frac{2}{15}+...+1-\frac{2}{9999}\)
\(=\left(1+1+1+1+...+1\right)-\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{9999}\right)\)
\(=50-\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=50-\left(1-\frac{1}{101}\right)=50-\frac{100}{101}=\frac{4950}{101}\)
HTDT
Ta có : 3/4 + 8/9 + 15/16 +...+ 9999/10000 = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ...+ (1 - 1/10000) = 99 - (1/4 + 1/9 + 1/16 +...+ 1/10000) (1)
Đặt A = 1/4 + 1/9 + 1/16 +...+ 1/10000
A = 1/2.2 + 1/3.2 + 1/4.4 +.....+ 1/100.100
Mà : A = 1/2.2 + 1/3.2 + 1/4.4 +.....+ 1/100.100 < 1/1.2 + 1/2.3 + 1/3.4 + ....+1/99.100 hay A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+ 1/99 - 1/100
Vậy A < 1 - 1/100 < 1 (2) Từ (1) và (2) => 98 < 3/4 + 8/9 + 15/16 +...+ 9999/10000 < 99 Vậy tổng trên ko phải STN
\(A=\frac{4}{3}+\frac{16}{15}+\frac{36}{35}+...+\frac{9604}{9603}+\frac{10000}{9999}\)
\(=1+\frac{1}{1\times3}+1+\frac{1}{3\times5}+1+\frac{1}{5\times7}+...+1+\frac{1}{97\times99}+1+\frac{1}{99\times101}\)
\(=50+\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{97\times99}+\frac{2}{99\times101}\right)\)
\(=50+\frac{1}{2}\times\left(\frac{3-1}{1\times3}+\frac{5-3}{3\times5}+\frac{7-5}{5\times7}+...+\frac{99-97}{97\times99}+\frac{101-99}{99\times101}\right)\)
\(=50+\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
\(=50+\frac{1}{2}\times\left(1-\frac{1}{101}\right)\)
\(=\frac{5100}{101}\)