K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)

\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)

Trừ theo vế:

\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)

\(4B=5^{2010}-1\)

\(B=\frac{5^{2010}-1}{4}\)

AH
Akai Haruma
Giáo viên
25 tháng 10 2018

\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)

\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)

\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)

Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)

\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)

Trừ theo vế:

\(3X-X=3^n-3^0=3^n-1\)

\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)

28 tháng 6 2018

Bạn viết đề thiếu trầm trọng quá !!!

28 tháng 6 2018

Đáp án: thiếu đề

@#@

mời bn xem xét lại đề bài.

~hok tốt~

9 tháng 7 2019

\(a,\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}=\frac{3^{61}}{3^{60}}=3\)

\(b,\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{20}\cdot2^{20}-2^{20}\cdot1+2^{20}\cdot3^{20}}{2^{20}\cdot3^{20}-3^{20}\cdot1+3^{20}\cdot3^{20}}\)\(=\frac{2^{20}\left(2^{20}-1+3^{20}\right)}{3^{20}\left(2^{20}-1+3^{20}\right)}=\frac{2^{30}}{3^{20}}\)

\(c,\left(-1\right)^{2n}\cdot\left(-1\right)^{3n}\cdot\left(-1\right)^{n+1}=\left(-1\right)^{2n+3n+n+1}=\left(-1\right)^{6n+1}\)

\(d,\frac{9^{11}-9^{16}-9^9}{639}=\frac{9^9\left(9^2-9^7-1\right)}{9\cdot71}=\frac{9^8\left(9^2-9^7-1\right)}{71}\)

9 tháng 7 2019

Bạn có thể giải chi tiết thêm được không?