Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(\Rightarrow 5B=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
Trừ theo vế:
\(5B-B=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+...+5^{2009})\)
\(4B=5^{2010}-1\)
\(B=\frac{5^{2010}-1}{4}\)
\(S=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+..+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+3^1+3^2+...+3^{n-1}}{2}+\frac{\underbrace{1+1+...+1}_{n}}{2}\)
\(=\frac{3^0+3^1+3^2+..+3^{n-1}}{2}+\frac{n}{2}\)
Đặt \(X=3^0+3^1+3^2+..+3^{n-1}\)
\(\Rightarrow 3X=3^1+3^2+3^3+...+3^{n}\)
Trừ theo vế:
\(3X-X=3^n-3^0=3^n-1\)
\(\Rightarrow X=\frac{3^n-1}{2}\). Do đó \(S=\frac{3^n-1}{4}+\frac{n}{2}\)
Đáp án: thiếu đề
@#@
mời bn xem xét lại đề bài.
~hok tốt~
\(a,\frac{3^{17}\cdot81^{11}}{27^{10}\cdot9^{15}}=\frac{3^{17}\cdot3^{44}}{3^{30}\cdot3^{30}}=\frac{3^{61}}{3^{60}}=3\)
\(b,\frac{4^{20}-2^{20}+6^{20}}{6^{20}-3^{20}+9^{20}}=\frac{2^{20}\cdot2^{20}-2^{20}\cdot1+2^{20}\cdot3^{20}}{2^{20}\cdot3^{20}-3^{20}\cdot1+3^{20}\cdot3^{20}}\)\(=\frac{2^{20}\left(2^{20}-1+3^{20}\right)}{3^{20}\left(2^{20}-1+3^{20}\right)}=\frac{2^{30}}{3^{20}}\)
\(c,\left(-1\right)^{2n}\cdot\left(-1\right)^{3n}\cdot\left(-1\right)^{n+1}=\left(-1\right)^{2n+3n+n+1}=\left(-1\right)^{6n+1}\)
\(d,\frac{9^{11}-9^{16}-9^9}{639}=\frac{9^9\left(9^2-9^7-1\right)}{9\cdot71}=\frac{9^8\left(9^2-9^7-1\right)}{71}\)