K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

\(B=4x^2+5y^2-4xy+3x-y\)

\(\Leftrightarrow\left(4x^2-4xy+3x\right)+5y^2-y\)

\(\Leftrightarrow\left[4x^2-4x\left(y-\dfrac{3}{4}\right)+\left(y-\dfrac{3}{4}\right)^2\right]+5y^2-y-y^2+\dfrac{3}{2}y-\dfrac{9}{16}\)\(\Leftrightarrow\left(2x-y+\dfrac{3}{4}\right)^2+\left(4y^2-\dfrac{1}{2}y+\dfrac{1}{64}\right)-\dfrac{37}{64}\)

\(\Leftrightarrow\left(2x-y+\dfrac{3}{4}\right)^2+\left(2y-\dfrac{1}{8}\right)^2-\dfrac{37}{64}\ge\dfrac{-37}{64}\)

Vậy Min B = \(\dfrac{-37}{64}\) khi \(\left[{}\begin{matrix}\left(2x-y+\dfrac{3}{4}\right)^2=0\\\left(2y-\dfrac{1}{8}\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-y+\dfrac{3}{4}=0\\2y-\dfrac{1}{8}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-y+\dfrac{3}{4}=0\\2y=\dfrac{1}{8}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-\dfrac{1}{16}+\dfrac{3}{4}=0\\y=\dfrac{1}{16}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-11}{32}\\y=\dfrac{1}{16}\end{matrix}\right.\)

14 tháng 6 2017

\(C=9y^2+2x^2-6y-6xy+5x-1\)

\(=\left(9y^2+6y-6xy\right)+2x^2+5x-1\)

\(=\left[9y^2+6y\left(1-x\right)+\left(1-x\right)^2\right]+2x^2+5x-1-1+2x-x^2\)\(=\left(3y-x+1\right)^2+\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{17}{4}\)

\(=\left(3y-x+1\right)^2+\left(x+\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)

Vậy Min C = \(\dfrac{-17}{4}\) khi \(\left[{}\begin{matrix}\left(3y-x+1\right)^2=0\\\left(x+\dfrac{3}{2}\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3y-x+1=0\\x+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3y-\left(\dfrac{-3}{2}\right)+1=0\\x=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=\dfrac{-5}{6}\\x=\dfrac{-3}{2}\end{matrix}\right.\)