Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)
\(\Rightarrow-x=5\)
\(\Rightarrow x=-5\)
\(\text{Vậy x=-5}\)
\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)
\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)
\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)
\(\Rightarrow-16x-8=7\)
\(\Rightarrow-16x=15\)
\(\Rightarrow x=\frac{-15}{16}\)
\(\text{Vậy }x=\frac{-15}{16}\)
\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)
\(\Rightarrow-9+8x-1=8\)
\(\Rightarrow8x=18\)
\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)
\(\text{Vậy }x=\frac{9}{4}\)
\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)
a) Ta có: 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{19}{24}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{19}{24}\right\}\)
b) Ta có: \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
hay \(x=\frac{15}{8}\)
Vậy: \(x=\frac{15}{8}\)
c) Ta có: \(3x\left(2-x\right)+2x\left(x-1\right)=5x\left(x+3\right)\)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\)
\(\Leftrightarrow-x^2+4x-5x^2-15x=0\)
\(\Leftrightarrow-6x^2-11x=0\)
\(\Leftrightarrow6x^2+11x=0\)
\(\Leftrightarrow x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-11}{6}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;\frac{-11}{6}\right\}\)
d) Ta có: \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
\(\Leftrightarrow14x^2=-18\)
mà \(14x^2\ge0\forall x\)
nên \(x\in\varnothing\)
Vậy: \(x\in\varnothing\)
a) Nếu 4x-1 \(\ge\) 0 \(\Leftrightarrow\) x\(\ge\) \(\frac{1}{4}\) (*) thì phương trình trở thành:
4x-1 = x+3 \(\Leftrightarrow\) 3x = 4 \(\Leftrightarrow\) x = \(\frac{4}{3}\) (t/m (*))
Nếu 4x - 1< 0 \(\Leftrightarrow\) x < \(\frac{1}{4}\) (**) thì phương trình trở thành:
-4x+1 = x+3 \(\Leftrightarrow\) 5x = -2 \(\Leftrightarrow\) x = \(-\frac{2}{5}\) (t/m (**))
Vậy tập nghiệm của pt đã cho là S=\(\left\{\frac{4}{3};-\frac{2}{5}\right\}\)
b) Nếu 4x-1 \(\ge\) 0 \(\Leftrightarrow\) x\(\ge\) \(\frac{1}{4}\) (*) thì phương trình trở thành:
4x-1 = 5+2x \(\Leftrightarrow\) 2x = 6 \(\Leftrightarrow\) x = 3 (t/m(*))
Nếu 4x - 1< 0 \(\Leftrightarrow\) x < \(\frac{1}{4}\) (**) thì phương trình trở thành:
-4x+1 = 5+2x \(\Leftrightarrow\) 6x = -4 \(\Leftrightarrow\) x = \(-\frac{2}{3}\)(t/m(**))
Vậy tập nghiệm của pt đã cho là S=\(\left\{3;-\frac{2}{3}\right\}\)
a) \(\left(2x-5\right)^2-\left(2x+3\right)\left(2x-3\right)=10\Leftrightarrow\left(4x^2-20x+25\right)-\left(4x^2-9\right)-10=0\)
\(\Leftrightarrow-20x+24=0\Leftrightarrow x=\frac{6}{5}\)
b) \(\left(4x-1\right)\left(x+2\right)-\left(2x+3\right)^2-5\left(x-1\right)=9\Leftrightarrow-10x-15=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
c) \(\left(x+1\right)^3-\left(x-1\right)^3-2=6\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-8=0\)
\(\Leftrightarrow6x^2-6=0\Leftrightarrow x=\pm1\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+1\right)\left(x^2-x+1\right)-3\left(-x-2\right)=5\)
\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+1\right)+3x+6=5\Leftrightarrow3x+8=0\Leftrightarrow x=\frac{-8}{3}\)
\(a,3\left(x-2\right)-5=1-2x\)
\(\Leftrightarrow3x-6-5=1-2x\)
\(\Leftrightarrow5x=12\)
\(\Leftrightarrow x=\dfrac{12}{5}\)
Vậy....
\(b,\left(2x-1\right)\left(x^2+2x-3\right)=4x^2-1\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x-3\right)=\left(2x\right)^2-1^2\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x-3\right)=\left(2x-1\right)\left(2x+1\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x-3\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2x-3-2x+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2+2\right)=0\)
... tự giải tiếp nhé, đến đây dễ r