Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+3\right)^3-x.\left(3x+1\right)^2+\left(2x+1\right).\left(4x^2-2x+1\right)-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-x.\left(9x^2+6x+1\right)+8x^3+1-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=54\)
\(\Leftrightarrow26x+28=54\Leftrightarrow26x=54-28\Leftrightarrow26x=26\Leftrightarrow x=1\)
Vậy nghiệm của phương trình là x=1
b) \(\left(x-3\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2+3x^2=-33\)
\(\Leftrightarrow x^3-9x^2+27x-27-\left(x^3-27\right)+6.\left(x^2+2x+1\right)+3x^2=-33\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\)
\(\Leftrightarrow27x+12x+6=-33\Leftrightarrow39x=-33-6\Leftrightarrow39x=-39\Leftrightarrow x=-1\)
Vậy nghiệm của phương trình là x = -1
Trần Anh: Hí hí =)) ÀI LỚP DIU CHIU CHIU CHÍU :3 CẢM ƠN PẠN NHIỀU NHÁ ;) ;) ;)
<=> x2 -4+3x2= 4x2+4x+1+2x
<=> 4x^2 - 4= 4x^2 +6x +1
<=> - 4=6x +1
<=> 6x= -5
<=> x= \(-\frac{5}{6}\)
\(2x^2-4x-5=2x^2-4x+2-7=2\left(x-1\right)^2-7\ge0-7=-7\Leftrightarrow x=1\)
\(-2x^2-6x+15=-2x^2-6x-4,5+19,5=-2\left(x+\frac{3}{2}\right)^2+19,5\le0+19,5=19,5\Leftrightarrow x=\frac{-3}{2}\)
Bài 1 : Tìm giá trị lớn nhất, nhỏ nhất
a, \(2x^2-4x-5=2\left(x^2-2x+1\right)-7=2\left(x-1\right)^2-7\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2x^2-4x-5\ge-7\)
\(''=''\Leftrightarrow x=1\)
b, \(-2x^2-6x+15=-2\left(x^2+2x.\frac{3}{2}+\frac{9}{4}\right)+\frac{39}{2}=-2\left(x+\frac{3}{2}\right)^2+\frac{39}{2}\)
Vì \(-2\left(x+\frac{3}{2}\right)^2\le0\Rightarrow-2x^2-6x+15\le\frac{39}{2}\)
\(''=''\Leftrightarrow x=-\frac{3}{2}\)
Bài 2 : Tìm x
a, \(2x^3-3x^2+2=0\) (tạm thời chưa ra)
b, \(x^4-2x^2+1=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow x=\pm1\)
Ít thôi -..-
a) ( 3x + 2 )( 2x + 9 ) - ( x + 3 )( 6x + 1 ) = ( x + 1 )2 - ( x + 2 )( x - 2 )
<=> 6x2 + 31x + 18 - ( 6x2 + 19x + 3 ) = x2 + 2x + 1 - ( x2 - 4 )
<=> 6x2 + 31x + 18 - 6x2 - 19x - 3 = x2 + 2x + 1 - x2 + 4
<=> 12x + 15 = 2x + 5
<=> 12x - 2x = 5 - 15
<=> 10x = -10
<=> x = -1
b) ( 2x + 3 )( x - 4 ) + ( x - 5 )( x - 2 ) = ( 3x - 5 )( x - 4 )
<=> 2x2 - 5x - 12 + x2 - 7x + 10 = 3x2 - 17x + 20
<=> 3x2 - 12x - 2 = 3x2 - 17x + 20
<=> 3x2 - 12x - 3x2 + 17x = 20 + 2
<=> 5x = 22
<=> x = 22/5
c) ( x + 2 )3 - ( x - 2 )3 - 12x( x - 1 ) = -8
<=> x3 + 6x2 + 12x + 8 - ( x3 - 6x2 + 12x - 8 ) - 12x2 + 12x = -8
<=> x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
<=> 12x + 16 = -8
<=> 12x = -24
<=> x = -2
d) ( 3x - 1 )2 - 5( x + 1 ) + 6x - 3.2x + 1 - ( x - 1 )2 = 16
<=> 9x2 - 6x + 1 - 5x - 5 + 6x - 6x + 1 - ( x2 - 2x + 1 ) = 16
<=> 9x2 - 11x - 3 - x2 + 2x - 1 = 16
<=> 8x2 - 9x - 4 = 16
<=> 8x2 - 9x - 4 - 16 = 0
<=> 8x2 - 9x - 20 = 0
( Đến đây bạn có hai sự lựa chọn : 1 là vô nghiệm
2 là nghiệm vô tỉ =) )
a) (3x + 2)(2x + 9) - (x + 3)(6x + 1) = (x + 1)2 - (x + 2)(x - 2)
=> 3x(2x + 9) + 2(2x + 9) - x(6x + 1) - 3(6x + 1) = x2 + 2x + 1 - x(x - 2) - 2(x - 2)
=> 6x2 + 27x + 4x + 18 - 6x2 - x - 18x - 3 = x2 + 2x + 1 - x2 + 2x - 2x + 4
=> (6x2 - 6x2) + (27x + 4x - x - 18x) + (18 - 3) = (x2 - x2) + (2x + 2x - 2x) + (1 + 4)
=> 12x + 15 = 2x + 5
=> 12x + 15 - 2x - 5 = 0
=> 10x + 10 = 0
=> 10x = -10 => x = -1
b) (2x + 3)(x - 4) + (x - 5)(x - 2) = (3x - 5)(x - 4)
=> 2x(x - 4) + 3(x - 4) + x(x - 2) - 5(x - 2) = 3x(x - 4) - 5(x - 4)
=> 2x2 - 8x + 3x - 12 + x2 - 2x - 5x + 10 = 3x2 - 12x - 5x + 20
=> (2x2 + x2) + (-8x + 3x - 2x - 5x) + (-12 + 10) = 3x2 - 17x + 20
=> 3x2 - 12x - 2 = 3x2 - 17x + 20
=> 3x2 - 12x - 2 - 3x2 + 17x - 20 = 0
=> (3x2 - 3x2) + (-12x + 17x) + (-2 - 20) = 0
=> 5x - 22 = 0
=> 5x = 22 => x = 22/5
c) (x + 2)3 - (x - 2)3 - 12x(x - 1) = -8
=> x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 + 12x = -8
=> x3 + 6x2 + 12x + 8 -x3 + 6x2 - 12x + 8 - 12x2 + 12x = -8
=> (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x + 12x) + (8 + 8) = -8
=> 12x + 16 = -8
=> 12x = -24
=> x = -2
Còn bài cuối làm nốt
\(a,9x^2-4-9\left(x+1\right)^2=10\)
\(9x^2-4-9\left(x^2+2x+1\right)=10\)
\(9x^2-4-9x^2-18x-9=10\)
\(-5-18x=10\)
\(18x=-15\)
\(x=-\frac{5}{6}\)
\(b,2\left(x+3\right)\left(x-2\right)-2\left(x^2+1\right)=2\)
\(\left(2x+6\right)\left(x-2\right)-2x^2-2=2\)
\(2x^2+6x-4x-12-2x^2-4=0\)
\(2x-16=0\)
\(x=8\)
\(4x^2+12x-\left(4x^2+4x+1\right)=-5\)
\(4x^2+12x-4x^2-4x-1=-5\)
\(8x=-4\)
\(x=-\frac{1}{2}\)
Trả lời:
a, ( 3x - 2 ) ( 3x + 2 ) - 9 ( x + 1 )2 = 10
<=> 9x2 - 4 - 9 ( x2 + 2x + 1 ) = 10
<=> 9x2 - 4 - 9x2 - 18x - 9 = 10
<=> - 18x - 13 = 10
<=> - 18x = 23
<=> x = - 23/18
Vậy x = - 23/18 là nghiệm của pt.
b, 2 ( x + 3 ) ( x - 2 ) - 2 ( x2 + 1 ) = 2
<=> 2 ( x2 - 2x + 3x - 6 ) - 2x2 - 2 = 2
<=> 2x2 - 4x + 6x - 12 - 2x2 - 2 = 2
<=> 2x - 14 = 2
<=> 2x = 16
<=> x = 8
Vậy x = 8 là nghiệm của pt.
c, 4x ( x + 3 ) - ( 2x + 1 )2 = - 5
<=> 4x2 + 12x - ( 4x2 + 4x + 1 ) = - 5
<=> 4x2 + 12x - 4x2 - 4x - 1 = - 5
<=> 8x - 1 = - 5
<=> 8x = - 4
<=> x = - 1/2
Vậy x = - 1/2 là nghiệm của pt.