K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

1 tháng 5 2018

a \(2x+2>4\\ \Leftrightarrow2\left(x+1\right)>4\\ \Leftrightarrow x+1>2\\ \Leftrightarrow x>1\)

b \(3x+2>-5\\ \Leftrightarrow3x>-7\\ \Leftrightarrow x>\dfrac{-7}{3}\)

c \(10-2x>2\\ \Leftrightarrow2\left(5-x\right)>2\\ \Leftrightarrow5-x>1\\ \Leftrightarrow-x>-4\\ \Leftrightarrow x< 4\)

d \(1-2x< 3\\ \Leftrightarrow-2x< 2\\ \Leftrightarrow2x>2\\ \Leftrightarrow x>1\)

4 tháng 5 2018

a)2x+2>4

<=> 2x>4-2

<=>2x>2

<=>x>1

Vậy...

b)3x+2>-5

<=>3x>-5-2

<=>3x>-7

<=>x>\(\dfrac{-7}{3}\)

Vậy...

c)10-2x>2

<=>-2x>-10+2

<=>-2x>-8

<=>x<4

Vậy...

d)1-2x<3

<=>-2x<3-1

<=>-2x<2

<=>x>-1

Vậy...

e)10x+3-5\(\le\)14x+12

<=>10x-2\(\le\)14x+12

<=>10x-14x\(\le\)2+12

<=>-4x\(\le\)14

<=>x\(\ge\)\(\dfrac{-7}{2}\)

Vậy...

f)(3x-1)<2x+4

<=> 3x-2x<1+4

<=>x<5

Vậy...

19 tháng 5 2017

Câu a.

Ta luôn có 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)  (do a+b < a+b+c)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo từng vế rồi rút gọn ta đươc đpcm

19 tháng 5 2017

Cảm ơn b nhé. B biết làm.câu b c d không giúp m với

6 tháng 4 2018

b, 2x-1>6-2

c, 2x+3>2-1

mk thấy đề sai sai

6 tháng 4 2018

Làm cái éo j thế

11 tháng 3 2020

1) x - 8 = 3 - 2(x + 4)

<=> x - 8 = 3 - 2x - 8

<=> x + 2x = -5 + 8

<=> 3x = 3

<=> x = 1

Vậy S = {1}

2) 2(x + 3) - 3(x - 1) = 2

<=> 2x + 6 - 3x + 3 = 2

<=> -x = 2 - 9

<=> -x = -7

<=> x = 7

Vậy S = {7}

3) 4(x - 5) - (3x - 1) = x - 19

<=> 4x - 20 - 3x + 1 = x - 19

<=> x - 19 = x - 19

<=> x - x = -19 + 19

<=> 0x = 0

=> pt luôn đúng với mọi x

4) 7 - (x - 2) = 5(2x - 3)

<=> 7 - x + 2 = 10x + 15

<=> -x - 10x = 15 - 9

<=> -11x = 6

<=> x = -6/11

Vậy S = {-6/11}

11 tháng 3 2020

\(5,32-4\left(0,5y-5\right)=3y+2\)

\(\Leftrightarrow32-2y+20-3y-2=0\)

\(\Leftrightarrow-5y+50=0\Leftrightarrow y=10\)

\(6,3\left(x-1\right)-x=2x-3\)

\(\Leftrightarrow3x-3-x-2x+3=0\)

\(\Leftrightarrow0=0\) (luôn đúng )

=> pt vô số nghiệm

\(7,2x-4=-12+3x\)

\(\Leftrightarrow-x=-8\Leftrightarrow x=8\)

\(8,x\left(x-1\right)-x\left(x+3\right)=15\)

\(\Leftrightarrow x^2-x-x^2-3x-15=0\)

\(\Leftrightarrow-4x-15=0\Leftrightarrow x=\frac{-15}{4}\)

\(9,x\left(x-1\right)=x\left(x+3\right)\)

\(\Leftrightarrow x^2-x-x^2-3x=0\Leftrightarrow-4x=0\Leftrightarrow x=0\)

\(10,x\left(2x-3\right)+2=x\left(x-5\right)-1\)

\(\Leftrightarrow2x^2-3x+2-x^2+5x+1=0\)

\(\Leftrightarrow x^2+2x+3=0\) (vô lý)

=> pt vô nghiệm

\(11,\left(x-1\right)\left(x+3\right)=-4\)

\(\Leftrightarrow x^2+2x-3+4=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

\(12,\left(x-2\right)\left(x-5\right)=\left(x-3\right)\left(x-4\right)\)

\(\Leftrightarrow x^2-7x+10=x^2-7x+12\)

\(\Leftrightarrow10=12\) (vô lý)=> pt vô nghiệm

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg
16 tháng 6 2020
https://i.imgur.com/CWk68aD.jpg