Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{25x^2-30x+9}=x+7\) (ĐK: \(x\ge-7\))
\(\Leftrightarrow\sqrt{\left(5x-3\right)^2}=x+7\)
\(\Leftrightarrow\left|5x-3\right|=x+7\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x+7\\5x-3=-x-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(n\right)\\x=-\dfrac{2}{3}\left(n\right)\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{5}{2};-\dfrac{2}{3}\right\}\)
\(\sqrt{25x^2-30x+9}=x+7\left(x\ge-7\right)\)
\(\Rightarrow\sqrt{\left(5x+3\right)^2}=x+7\)
\(\Rightarrow\left|5x+3\right|=x+7\)
Xét trường hợp \(x\ge-\dfrac{5}{3}\) và \(x< \dfrac{5}{3}\) nha
\(A=25x^2-30x+9=\left(5x-3\right)^2\)
\(B=\left(2x-7\right)^2\)
`A = -25x^2 +30x -2 = -(25x^2 -30x +2)`
`= -[(5x)^2 - 2*5x*3 +3^2 +2-3^2]`
`=-[(5x-3)^2 -7] = 7-(5x-3)^2`
Do `-(5x-3)^2 <= 0 AA x`
`=> 7- (5x-3)^2 <0 AA x `
hay `A<0 AA x (đpcm)`
từ đã có gì đó hơi sai sai
\(7-\left(5x-3\right)^2=-\left(5x-3\right)^2+7\) mà=)))
sao nó lại nhỏ hơn không nhỉ=)))
B = \(-x^2+4x+5=-\left(x^2-4x-5\right)=-\left[\left(x^2-4x+4\right)-9\right]=-\left(x-2\right)^2+9\)
Có: \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2+9\le9\)
Vậy MaxB = 9 <=> x = 2
-----
C = \(x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\)
Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)
Dấu ''='' xảy ra khi x = 2
Vậy MinC = 5 <=> x = 2
--------
D = \(9+30x^2+25x^2=9+55x^2\ge9\)
dấu ''='' xảy ra khi x = 0
vậy minC = 9 <=> x = 0
9x2 - 6x + 1 = (3x + 1 )2
-x2 + 6x - 9 = ( -x - 3 )2
25x2 + 30x + 9 = ( 5x + 3 )2
-1/4 + 2x - x2 = ( - 1/2 - x )2
4x2 - 12x + 9 = ( 2x +3 )2
a, 9x2-6x+1
=(3x)2-2.3x.1+12
=(3x-1)2
b, -x2+6x-9
=-(x2-6x+9)
=-(x2-2x.3+32)
=-(x-3)2
c, 25x2+30x+9
=(5x)2+2.5x.3+32
=(5x+3)2
d, Mik nghĩ là đề sai chỗ +2x phải là +x (ko tin bn có thể thế đại 1 số rùi thử lại nhoa!!!)
e, 4x2-12x+9
=(2x)2-2.2x.3+32
=(2x-3)2
Chúc bn học giỏi nhoa!!!
\(1,x^2+4x-2=\left(x+2\right)^2-6\ge6\)
Dấu \("="\Leftrightarrow x=-2\)
\(2.x^2+7x+1=\left(x+\dfrac{7}{2}\right)^2-\dfrac{45}{4}\ge-\dfrac{45}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{7}{2}\)
\(3,25x^2+30x+11=\left(5x+3\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{5}\)
\(-\left(x+2y\right)^2\)
\(-\left(x-3\right)^2\)
\(\left(3-5x\right)^2\)
\(-x^2-4xy-4y^2=-\left(x+2y\right)^2\)
\(-x^2+6x-9=-\left(x-3\right)^2\)
\(25x^2-30x+9=\left(5x-3\right)^2\)
a) Với x = 24
=> x + 1 = 24 (1)
Thay (1) vào A ta được:
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(A=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+x+1\)
\(A=1\)
b) Với x = 31
=> x - 1 = 30 (1)
Thay (1) vào B ta được
\(B=x^3-\left(x-1\right)x^2-\left(x-1\right)x+1\)
\(B=x^3-x^3+x^2-x^2+x+1\)
\(B=x+1\)
\(B=31+1=32\)
c) Với x = 14
=> x + 1 = 15
x + 2 = 16
2x + 1 = 29
x - 1 = 13
Thay tất cả biểu thức trên vào C ta được
\(C=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(C=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(C=-x\)
\(C=-14\)
d) Ta có:
\(\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)\left(-2+x^2\right)=1\)
\(\Rightarrow\left(-2+x^2\right)^5=1\)
\(\Rightarrow-2+x^2=1\)
\(\Rightarrow x^2=1+2=3\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\=-\sqrt{3}\end{matrix}\right.\)
A= (5x)2-2.5.3.x+9
= (5x-3)2