Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=(4-5x)2-(3+5x)2=(4-5x-3-5x)(4-5x+3+5x)=(-25x+1)1=-25x+1
B=(3x-1)(1+3x)-(3x+1)2=9x2-1-(3x+1)2=9x2-1-(9x2+6x+1)=9x2-1-9x2-6x-1=-6x-2=-2(3x+1)
5: =>4x^2-1/9=0
=>(2x-1/3)(2x+1/3)=0
=>x=1/6 hoặc x=-1/6
6: =>x-1=2
=>x=3
7:=>(2x-1)^3=-27
=>2x-1=-3
=>2x=-2
=>x=-1
8: =>1/8(x-1)^3=-125
=>(x-1)^3=-1000
=>x-1=-10
=>x=-9
3: =>(5x-5)^2-4=0
=>(5x-7)(5x-3)=0
=>x=3/5 hoặc x=7/5
4: =>(5x-1)^2=0
=>5x-1=0
=>x=1/5
1: =>(3x-1)(2x-1)=0
=>x=1/3 hoặc x=1/2
2: =>x^2(2x-3)-4(2x-3)=0
=>(2x-3)(x^2-4)=0
=>(2x-3)(x-2)(x+2)=0
=>x=3/2;x=2;x=-2
`@` `\text {Answer}`
`\downarrow`
`1,`
\(2x\left(3x-1\right)+1-3x=0\)
`<=> 2x(3x - 1) - 3x + 1 = 0`
`<=> 2x(3x - 1) - (3x - 1) = 0`
`<=> (2x - 1)(3x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x-1=0\\3x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=1\\3x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy, `S = {1/2; 1/3}`
`2,`
\(x^2\left(2x-3\right)+12-8x=0\)
`<=> x^2(2x - 3) - 8x + 12 =0`
`<=> x^2(2x - 3) - (8x - 12) = 0`
`<=> x^2(2x - 3) - 4(2x - 3) = 0`
`<=> (x^2 - 4)(2x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-4=0\\2x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=4\\2x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2=\left(\pm2\right)^2\\x=\dfrac{3}{2}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\pm2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy, `S = {+-2; 3/2}`
`3,`
\(25\left(x-1\right)^2-4=0\)
`<=> 25(x-1)(x-1) - 4 = 0`
`<=> 25(x^2 - 2x + 1) - 4 = 0`
`<=> 25x^2 - 50x + 25 - 4 = 0`
`<=> 25x^2 - 15x - 35x + 21 = 0`
`<=> (25x^2 - 15x) - (35x - 21) = 0`
`<=> 5x(5x - 3) - 7(5x - 3) = 0`
`<=> (5x - 7)(5x - 3) = 0`
`<=>`\(\left[{}\begin{matrix}5x-7=0\\5x-3=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}5x=7\\5x=3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{7}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy, `S = {7/5; 3/5}`
`4,`
\(25x^2-10x+1=0\)
`<=> 25x^2 - 5x - 5x + 1 = 0`
`<=> (25x^2 - 5x) - (5x - 1) = 0`
`<=> 5x(5x - 1) - (5x - 1) = 0`
`<=> (5x - 1)(5x-1)=0`
`<=> (5x-1)^2 = 0`
`<=> 5x - 1 = 0`
`<=> 5x = 1`
`<=> x = 1/5`
Vậy,` S = {1/5}.`
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
a) \(3y^2\left(2y-1\right)+y-y\left(1-y+y^2\right)-y^2+y \)
= \(6y^3-3y^2+y-y+y^2-y^3-y^2+y\)
= \(5y^3-3y^2+y\)
b)\(25x-4\left(3x-1\right)+\left(5-2x\right)7\)
= \(25x-12x+4+35-14x\)
= \(-x+39\)
c) \(11x-2\left(10x-1\right)-\left(4x-1\right)\left(-2\right)\)
= \(11x-\left(20x-2\right)-\left(-8x+2\right)\)
= \(11x-20x+2+8x-2\)
= \(-x\)
d) \(\left(\frac{1}{2x}\right)3-x\left(1-2x-\frac{1}{8x^2}\right)-x\left(x+\frac{1}{2}\right)\)
= \(\frac{3}{2x}-x+2x^2+\frac{x}{8x^2}-x^2-\frac{x}{2}\)
= \(\left(\frac{3}{2x}+\frac{1}{8x}-\frac{x}{2}\right)+x^2-x\)
= \(\left(\frac{12+1-4x^2}{8x}\right)+x^2-x\)
= \(\frac{13-4x^2}{8x}+\frac{8x^3}{8x}-\frac{8x^2}{8x}\)
= \(\frac{13-4x^2+8x^3-8x^2}{8x}\)
= \(\frac{8x^3-12x^2+13}{8x}\)
= x2 - \(\frac{3}{2}\)+\(\frac{13}{8x}\)
e) \(12\left(2-3x\right)+35x-\left(x+1\right)\left(-5\right)\)
= \(24-36x+35x-\left(-5x-5\right)\)
= \(24-36x+35x+5x+5\)
= 4x + 29
a/ \(2x-3=5x+2\)
\(\Leftrightarrow5x-2x=-3-2\)
\(\Leftrightarrow3x=-5\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy..
b. \(2x\left(x-1\right)=2x+2\)
\(\Leftrightarrow2x^2-4x-2=0\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1+\sqrt{2}\right)\left(x-1-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1-\sqrt{2}\\x=1+\sqrt{2}\end{matrix}\right.\)
Vậy...
c/ ĐKXĐ : \(x\ne\pm2\)
\(\dfrac{x+2}{x-2}-\dfrac{x^2}{x^2-4}=\dfrac{6}{\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+4x+4-x^2=6x-12\)
\(\Leftrightarrow2x-16=0\)
\(\Leftrightarrow x=8\)
Vậy..
a/ 12-3(x-2)=(x+2)(1-3x)+2x
\(\Leftrightarrow18-3x=-3x^2-3x+2\)
\(\Leftrightarrow3x^2=-16\left(vl\right)\)
=> phương trình vô nghiệm
b/\(\left(x+5\right)\left(x+2\right)\) =3(4x-2)+(x-5)
\(\Leftrightarrow x^2+3x+10=13x-11\)
\(\Leftrightarrow x^2-10x+21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
c/\(\frac{x-5}{x^2-5x}-\frac{x-5}{2x^2-10x}=\frac{x+25}{2x^2-50}\)(x khác 0)
\(\Leftrightarrow\frac{x-5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x-5\right)}=\frac{x^2+25}{2x^2-50}\)
\(\frac{\Leftrightarrow1}{x}-\frac{1}{2x}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow\frac{1}{2x}=\frac{x+25}{2x^2-50}\Leftrightarrow2x^2-50=2x^2+50x\)
\(\Leftrightarrow50x=-50\Leftrightarrow x=-1\)(tm)
d/4x2-1=(2x+1)(3x-5)
\(\Leftrightarrow4x^2-1=6x^2-7x-5\)
\(\Leftrightarrow2x^2-7x-4=0\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\frac{1}{2}\end{matrix}\right.\)
e/ \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
a: \(=\dfrac{6x^2-3x+4x^2+2x}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x\left(4x+5\right)}\)
\(=\dfrac{10x^2+x}{\left(2x+1\right)}\cdot\dfrac{2x-1}{2x\left(4x+5\right)}\)
\(=\dfrac{\left(10x^2+x\right)\left(2x-1\right)}{2x\cdot\left(2x+1\right)\left(4x+5\right)}\)
b: \(=\left(\dfrac{x}{\left(5x-1\right)\left(5x+1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x}\right)\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)
\(=\dfrac{x}{5\left(5x-1\right)}\cdot\dfrac{x\left(5x+1\right)}{5x-1}+\dfrac{x}{5x-1}\)
\(=\dfrac{x^2\left(5x+1\right)+5x\left(5x-1\right)}{5\left(5x-1\right)^2}\)
\(=\dfrac{5x^3+x^2+25x^2-5x}{5\left(5x-1\right)^2}=\dfrac{5x^3+26x^2-5x}{5\left(5x-1\right)^2}\)
c: \(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x^2+1\right)}\cdot\dfrac{x^2+1}{x-1}\)
\(=\dfrac{x+1}{x-2}+\dfrac{1-3x}{x\left(x-1\right)}\)
\(=\dfrac{x^3-x+\left(1-3x\right)\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{x^3-x+x-2-3x^2+6x}{x\left(x-1\right)\left(x-2\right)}=\dfrac{x^3-3x^2+6x-2}{x\left(x-1\right)\left(x-2\right)}\)
a: \(9x^2-30x+25=0\)
\(\Leftrightarrow3x-5=0\)
hay \(x=\dfrac{5}{3}\)
c: \(9x^2-25=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
a) \(9x^2-30x+25=0\Rightarrow\left(3x-5\right)^2=0\Rightarrow x=\dfrac{5}{3}\)
b) \(25x^2-5x+\dfrac{1}{4}=0\Rightarrow\left(10x-1\right)^2=0\Rightarrow x=\dfrac{1}{10}\)
c) \(9x^2-25=0\Rightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
d) \(\left(2x-1\right)^2-\left(3x+2\right)^2=0\)
\(\Rightarrow\left(2x-1+3x+2\right)\left(2x-1-3x-2\right)=0\)
\(\Rightarrow-\left(5x+1\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
\(a,=\left(5x+1\right)^2-y^2=\left(5x-y+1\right)\left(5x+y+1\right)\\ b,Sửa:25\left(2x+1\right)^2-\left(3x+2\right)^2\\ =\left[5\left(2x+1\right)-3x-2\right]\left[5\left(2x+1\right)+3x+2\right]\\ =\left(10x+5-3x-2\right)\left(10x+5+3x+2\right)\\ \left(7x+3\right)\left(13x+7\right)\\ c,=2x^2-8x+3x-12=\left(x-4\right)\left(2x+3\right)\)