K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2022

sửa đề \(A=\dfrac{2}{3}x^3y\left(-\dfrac{1}{8}x^3y^3\right)xyz=\dfrac{-1}{12}x^7y^5z\)

18 tháng 10 2015

a) Đặt \(\frac{x}{3}=\frac{y}{5}=k\) => x = 3k ; y = 5k

Do đó x . y = 3k . 5k = 15k2 = 60

=> k2 = 4 => k = + 2

- Với k = 2 thì x = 6 ; y = 10

- Với k = - 2 thì x = -6 ; y = -10

b) Tương tự     

31 tháng 3 2015

A + B + C = x2.y.z + x.y2.z + x.y.z2 = x.y.z.(x + y + z) = x.y.z .1 = xyz (Vì x+ y + z = 1)

AH
Akai Haruma
Giáo viên
2 tháng 3 2018

Lời giải:

Ta có:

\(A=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{zx+z+1}\)

\(A=\frac{xz}{xyz+xz+z}+\frac{y.xz}{yz.xz+y.xz+xz}+\frac{z}{zx+z+1}\)

\(A=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\) (thay \(xyz=1\) )

\(A=\frac{xz+1+z}{1+xz+z}=1\)

Bài 2: 

Ta có: \(\dfrac{x-1}{65}+\dfrac{x-3}{63}=\dfrac{x-5}{61}+\dfrac{x-7}{59}\)

\(\Leftrightarrow\left(\dfrac{x-1}{65}-1\right)+\left(\dfrac{x-3}{63}-1\right)=\left(\dfrac{x-5}{61}-1\right)+\left(\dfrac{x-7}{59}-1\right)\)

\(\Leftrightarrow\left(x-66\right)\left(\dfrac{1}{65}+\dfrac{1}{63}-\dfrac{1}{61}-\dfrac{1}{59}\right)=0\)

=>x-66=0

hay x=66

29 tháng 7 2017

a)\(0,2:1\frac{1}{5}=\frac{2}{3}:\left(6.x+7\right)\)

\(\frac{2}{3}:\left(6.x+7\right)=0,2:1\frac{1}{5}\)

\(\frac{2}{3}:\left(6.x+7\right)=0,2:\frac{6}{5}\)

\(\frac{2}{3}:\left(6.x+7\right)=\frac{1}{6}\)

\(6.x+7=\frac{2}{3}:\frac{1}{6}\)

\(6.x+7=4\)

      \(6.x=4-7\)

       \(6.x=-3\)

           \(x=-3:6\)

            \(x=-0,5\)

  Vậy x=-0,5 hay \(\frac{-1}{2}\)

d)\(\frac{x}{y}=\frac{2}{3};x.y=96\)

Từ \(\frac{x}{y}=\frac{2}{3}\)suy ra \(\frac{x}{3}=\frac{y}{2}\)

 Đặt k=\(\frac{x}{3}=\frac{y}{2}\)

\(\Rightarrow x=3.k;y=2.k\)

\(x.y=96\)nên \(2k.3k=96\)

                                            \(\Rightarrow6.k^2=96\)

                                              \(\Rightarrow k^2=96:6\)

                                               \(\Rightarrow k^2=16\)

                                                 \(\Rightarrow k=4\)hoặc\(k=-4\)

+)Với \(k=4\)thì \(x=2\);\(y=3\)

+)Với \(k=-4\)thì \(x=-2\);\(y=-3\)

               Vậy \(x=2;y=3\)hoặc \(x=-2;y=-3\)

e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810\)

    Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(x.y.z=810\)nên \(2k.3k.5k=810\)

                                \(\Rightarrow30.k^3=810\)

                                 \(\Rightarrow k^3=810:30\)

                                  \(\Rightarrow k^3=27\)

                                   \(\Rightarrow k=3\)

Với \(k=3\)thì \(x=6\); \(y=9\); \(z=15\)

            Vậy \(x=6\); \(y=9\); \(z=15\)

Mk chỉ làm đc vậy thui bn à! Xin lỗi thật nhiều nha

29 tháng 7 2017

bài ở sách mô đây mi

8 tháng 4 2015

x= 1

y=1

z=1

9 tháng 3 2018

x=1

y=1

z=1

6 tháng 3 2018

\(\left\{{}\begin{matrix}x,y,z\ne0\\x^2.y.z=-4\\xy^2z=2\\xyz^2=-2\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\\\left(3\right)\\\left(4\right)\end{matrix}\)

(2).(3).(4) \(\left(x^2yz\right).\left(xy^2z\right)\left(xyz^2\right)=\left(x^{2+1+1}.y^{1+2+1}.z^{1+1+2}\right)=\left(xyz\right)^4=\left(-4\right).2.\left(-2\right)=8\)\(\Leftrightarrow\left[{}\begin{matrix}xyz=2\\xyz=-2\end{matrix}\right.\)\(\begin{matrix}\left(I\right)\\\left(II\right)\end{matrix}\)

TH(I)

(2) => x =-2 ;(3) => y =1;(4) => z =-1

TH(II)

(2) => x =2 ; (3) => y =-1; (4) => z =1

(x;y;z)=(-2;1;-1);(2;-1;1)