Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A + B = (2x^2 y^2 - 4x^3 + 7xy - 18) + (x^3y + x^2y^2 - 15xy + 1)
= 2x^2 y^2 - 4x^3 + 7xy - 18 + x^3y + x^2y^2- 15xy + 1
= (2x^2 y2 + x^2y^2) - 4x^3 + x^3y + (7xy – 15xy) + ( -18 + 1)
= 3x^2 y2 - 4x^3 + x^3y – 8xy – 17
\(a,\frac{(-10)^5}{3\cdot(-6)^4}=\frac{(-2\cdot5)^5}{3\cdot(-2\cdot3)^4}=\frac{(-2)^5\cdot5^5}{3\cdot(-2)^4\cdot3^4}=\frac{(-2)^5\cdot5^5}{(-2)^4\cdot3^5}=-2\cdot\frac{5^5}{3^5}=\frac{-6250}{243}\)
\(b,\frac{2^{15}\cdot9^4}{6^6\cdot8^3}=\frac{\left[2^3\right]^5\cdot\left[3^2\right]^4}{\left[3\cdot2\right]^6\cdot\left[2^3\right]^3}=\frac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}=\frac{2^{15}\cdot3^8}{3^6\cdot2^{15}}=\frac{3^8}{3^6}=3^2=9\)
\(c,\left[1+\frac{2}{3}-\frac{1}{4}\right]\cdot\left[\frac{4}{5}-\frac{3}{4}\right]^2\)
\(=\left[\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right]\cdot\left[\frac{16}{20}-\frac{15}{20}\right]^2\)
\(=\frac{17}{12}\cdot\left[\frac{1}{20}\right]^2=\frac{17}{12}\cdot\frac{1^2}{20^2}=\frac{17}{12}\cdot\frac{1}{400}=\frac{17}{4800}\)
\(d,2^3+3\cdot\left[\frac{1}{2}\right]^0+\left[(-2)^2:\frac{1}{2}\right]\)
\(=8+3\cdot\frac{1^0}{2^0}+\left[4:\frac{1}{2}\right]\)
\(=8+3\cdot1+8=8+3+8=19\)
bài 2
làm câu B;C nha
B)
\(27^3=\left(3^3\right)^3=3^9\)
\(9^5=\left(3^2\right)^5=3^{10}\)
vì \(10>9\)
\(=>9^5>27^3\)
C)
\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2^3}\right)^6=\frac{1^6}{2^{18}}=\frac{1}{2^{18}}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2^5}\right)^4=\frac{1^4}{2^{20}}=\frac{1}{2^{20}}\)
vì \(2^{18}< 2^{20}\)
\(=>\frac{1}{2^{18}}>\frac{1}{2^{20}}\)
\(=>\left(\frac{1}{8}\right)^6>\left(\frac{1}{32}\right)^4\)
\(\text{A.}\frac{32^3.9^5}{8^3.6^6}=\frac{\left(2^5\right)^3.\left(3^2\right)^5}{\left(2^3\right)^3.\left(2.3\right)^6}=\frac{2^{15}.3^{10}}{2^9.2^6.3^6}=\frac{3^{10}}{3^6}=3^4=81\)
\(\text{B.}\frac{\left(5^5-5^4\right)^3}{50^6}=\frac{2500^3}{50^6}=\frac{\left(50^2\right)^3}{50^6}=\frac{50^6}{50^6}=1\)
Bài 2:
\(\text{A.Ta có:}\)
\(5^6=\left(5^3\right)^2=125^2\)
\(\left(-2\right)^{14}=2^{14}=\left(2^7\right)^2=128^2\)
Vì \(125< 128\)
\(\Rightarrow125^2< 128^2\)
\(\Rightarrow5^6< \left(-2\right)^{14}\)
\(\text{B.Ta có:}\)
\(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^9\)
Vì \(9< 10\)
\(\Rightarrow3^9< 3^{10}\)
\(\Rightarrow27^3< 9^5\)
\(\text{C.Ta có:}\)
\(\left(\frac{1}{8}\right)^6=\left[\left(\frac{1}{2}\right)^3\right]^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left[\left(\frac{1}{2}\right)^5\right]^4=\left(\frac{1}{2}\right)^{20}\)
Vì \(18< 20\)
\(\Rightarrow\left(\frac{1}{2}\right)^{18}< \left(\frac{1}{2}\right)^{20}\)
\(\Rightarrow\left(\frac{1}{8}\right)^6< \left(\frac{1}{32}\right)^4\)