K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=2018\times2020+2021\) và \(B=2019\times2019+2021\)

\(A=2018\times2019+2018+2021\)

\(B=2018\times2019+2019+2021\)

Vì \(2019>2018\Rightarrow A< B\)

3 tháng 9 2020

Ta có :

2018 x 2020 = 2018 x ( 2019 + 1 ) = 2018 + 2018 x 2019 < 2019 + 2018 x 2019 = 2019 x ( 2018 + 1 )

= 2019 x 2019

=> 2018 x 2020 < 2019 x 2019

=> 2018 x 2020 + 2021 < 2019 x 2019 + 2021

=> A < B

10 tháng 9 2023

\(a,\dfrac{199}{200}=1-\dfrac{1}{200};\dfrac{200}{201}=1-\dfrac{1}{201}\\ Vì:\dfrac{1}{200}>\dfrac{1}{201}\\ \Rightarrow1-\dfrac{1}{200}< 1-\dfrac{1}{201}\\ Vậy:\dfrac{199}{200}< \dfrac{200}{201}\\ b,\dfrac{2001}{2002}=1-\dfrac{1}{2002};\dfrac{2002}{2003}=1-\dfrac{1}{2003}\\ Vì:\dfrac{1}{2002}>\dfrac{1}{2003}\Rightarrow1-\dfrac{1}{2002}< 1-\dfrac{1}{2003}\\ Vậy:\dfrac{2001}{2002}< \dfrac{2002}{2003}\)

10 tháng 9 2023

\(c,\dfrac{2021}{2020}=1+\dfrac{1}{2020};\dfrac{2020}{2019}=1+\dfrac{1}{2019}\\ Vì:\dfrac{1}{2020}< \dfrac{1}{2019}\\ Nên:1+\dfrac{1}{2020}< 1+\dfrac{1}{2019}\\ Vậy:\dfrac{2021}{2020}< \dfrac{2020}{2019}\\ d,\dfrac{199}{198}=1+\dfrac{1}{198};\dfrac{200}{199}=1+\dfrac{1}{199}\\ Vì:\dfrac{1}{198}>\dfrac{1}{199}\\ Nên:1+\dfrac{1}{198}>1+\dfrac{1}{199}\\ Vậy:\dfrac{199}{198}>\dfrac{200}{199}\)

11 tháng 4 2023

>

12 tháng 4 2023

Kiến thức cần nhớ:

Tử số 1 lớn mẫu số 1; tử số 2 lớn hơn mẫu số 2

Tử số 1 trừ  mẫu số 1 = tử số 2 trừ mẫu số 2 thì ta dùng phương pháp so sánh phân số bằng phần hơn em nhé. Hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn

\(\dfrac{a+2020}{a+2017}\) = 1 + \(\dfrac{3}{a+2017}\)

\(\dfrac{a+2021}{a+2018}\) = 1 + \(\dfrac{3}{a+2018}\)

Vì \(\dfrac{3}{a+2017}\) > \(\dfrac{3}{a+2018}\)

Vậy \(\dfrac{a+2020}{a+2017}\) > \(\dfrac{a+2021}{a+2018}\) 

AH
Akai Haruma
Giáo viên
12 tháng 4 2023

Lời giải:

$\frac{a+2020}{a+2017}=\frac{a+2017+3}{a+2017}=1+\frac{3}{a+2017}$

$\frac{a+2021}{a+2018}=\frac{a+2018+3}{a+2018}=1+\frac{3}{a+2018}$

Hiển nhiên: $\frac{3}{a+2017}> \frac{3}{a+2018}$

Suy ra $1+\frac{3}{a+2017}> 1+\frac{3}{a+2018}$

Hay $\frac{a+2020}{a+2017}> \frac{a+2021}{a+2018}$

27 tháng 7 2021

Có: \(\dfrac{2019}{2021}=1-\dfrac{2}{2021}\)

       \(\dfrac{2020}{2022}=1-\dfrac{2}{2022}\)

\(\dfrac{2}{2021}>\dfrac{2}{2022}\Rightarrow1-\dfrac{2}{2021}< 1-\dfrac{2}{2022}\Rightarrow\dfrac{2019}{2021}< \dfrac{2020}{2022}\)

27 tháng 7 2021

cảm ơn nhá

 

26 tháng 5 2021

Ta có M=2019/2020+2020/2021+2021/2019

=>M=(1-1/2020)+(1-1/2021)+(1+2/2019)

=(1+1+1)+(2/2019-1/2020-1/2021)

=3+(1/2019+1/2019-1/2020-1/2021)

=3+(1/2019-1/2020)+(1/2019-1/2021)>3

Do 1/2019-1/2020>0

và 1/2019-1/2021>0

=>B>3

Vậy B>3

k cho mk nha

hok tốt=)))

26 tháng 5 2021

m > 3 nhé