
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-7}=\frac{x-y-z}{3-5+7}=\frac{20}{5}=4.\)
=> ...

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+2=2y\\x+y+z=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=-\frac{5}{6}\end{cases}}\)
\(A=2016x+y^{2017}+z^{2017}=2016.\frac{1}{2}+\left(\frac{5}{6}\right)^{2017}+\left(-\frac{5}{6}\right)^{2017}=1008\)

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2x+2y+2z}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
\(=\dfrac{1}{x+y+z}\)
\(\Rightarrow\dfrac{1}{x+y+z}=2\) và \(x+y+z=\dfrac{1}{2}\)
+) \(\dfrac{y+z+1}{x}=2\)
\(\Rightarrow y+z+1=2x\)
\(\Rightarrow x+y+z+1=3x\)
\(\Rightarrow3x=1+\dfrac{1}{2}\)
\(\Rightarrow3x=\dfrac{3}{2}\Rightarrow x=\dfrac{1}{2}\)
Tương tự như trên, ta tìm được \(y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay giá trị của x, y, z vào A ta được:
\(A=2016.\dfrac{1}{2}+\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\)
\(=1008\)
Vậy A = 1008

Đặt \(\frac{x}{2015}=\frac{y}{2016}=\frac{z}{2017}=k\)
\(\Rightarrow x=2015k;y=2016k;z=2017k\)
Ta có:
\(\left(x-z\right)^3=\left(2015k-2017k\right)^3=-8k^3\left(1\right)\)
Mặt khác:
\(-8\left(x-y\right)^2\left(z-y\right)=-8\left(2015k-2016k\right)^2\left(2017k-2016k\right)\)
\(=-8k^2\cdot k=-8k^3\left(2\right)\)
Từ ( 1 );( 2 ) suy ra đpcm

Câu hỏi của Đỗ Minh Châu - Toán lớp 7 - Học toán với OnlineMat
Em có thể tham khảo tại link này nhé!

Sửa đề:
\(\frac{x}{2016}=\frac{y}{2017}=\frac{z}{2018}=\frac{y-x}{1}=\frac{z-y}{1}=\frac{z-x}{2}\)
\(\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)
\(\Rightarrow\left(x-z\right)^3=4\left(x-y\right)^2.2\left(y-z\right)=8\left(x-y\right)^2\left(y-z\right)\)

a) Ta có : 2017 - |x - 2017| = x
=> |x - 2017| = 2017 - x (1)
Điều kiện xác định : \(2017-x\ge0\Rightarrow2017\ge x\Rightarrow x\le2017\)
Khi đó (1) <=> \(\orbr{\begin{cases}x-2017=2017-x\\x-2017=-\left(2017-x\right)\end{cases}\Rightarrow\orbr{\begin{cases}2x=2017+2017\\x-2017=-2017+x\end{cases}\Rightarrow}\orbr{\begin{cases}2x=4034\\0x=0\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x\text{ thỏa mãn }\Leftrightarrow x\le2017\end{cases}}\Rightarrow x\le2017\)
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2016}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2016}\ge\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}0\forall y}\Rightarrow\left(2x-1\right)^{2016}+\left(y-\frac{2}{5}\right)^{2016}+\left|x+y+z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-\frac{9}{10}\end{cases}}}\)
Tính A giúp mik luôn nhé!