Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)
\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)
\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)
\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)
\(=>x+1=0\)
\(=>x=-1\)
b,
\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)
\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)
\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)
\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)
\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)
Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)
\(=>x+2021=0\)
\(=>x=-2021\)
c,
\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)
\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)
\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)
Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)
\(=>x+329=0\)
\(=>x=-329\)
c) \(\left(34-2x\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6-0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
d) \(\left(2019-x\right)\left(3x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=4\end{matrix}\right.\)
e) \(57\left(9x-27\right)=0\)
\(\Rightarrow9x-27=0\)
\(\Rightarrow9\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
f) \(25+\left(15-x\right)=30\)
\(\Rightarrow25+15-x=30\)
\(\Rightarrow40-x=30\)
\(\Rightarrow x=40-30\)
\(\Rightarrow x=10\)
g) \(43-\left(24-x\right)=20\)
\(\Rightarrow43-24+x=20\)
\(\Rightarrow19+x=20\)
\(\Rightarrow x=20-19\)
\(\Rightarrow x=1\)
h) \(2\left(x-5\right)-17=25\)
\(\Rightarrow2\left(x-5\right)=17+25\)
\(\Rightarrow x-5=21\)
\(\Rightarrow x=21+5\)
\(\Rightarrow x=26\)
i) \(3\left(x+7\right)-15=27\)
\(\Rightarrow3\left(x+7\right)=27+15\)
\(\Rightarrow x+7=14\)
\(\Rightarrow x=14-7\)
\(\Rightarrow x=7\)
j) \(15+4\left(x-2\right)=95\)
\(\Rightarrow4\left(x-2\right)=95-15\)
\(\Rightarrow4\left(x-2\right)=80\)
\(\Rightarrow x-2=20\)
\(\Rightarrow x=20+2\)
\(\Rightarrow x=22\)
k) \(20-\left(x+14\right)=5\)
\(\Rightarrow x+14=20-5\)
\(\Rightarrow x+14=15\)
\(\Rightarrow x=15-14\)
\(\Rightarrow x=1\)
l) \(14+3\left(5-x\right)=27\)
\(\Rightarrow3\left(5-x\right)=27-14\)
\(\Rightarrow3\left(5-x\right)=13\)
\(\Rightarrow5-x=\dfrac{13}{3}\)
\(\Rightarrow x=5-\dfrac{13}{3}\)
\(\Rightarrow x=\dfrac{2}{3}\)
Hai bài bị trùng nhau nên các bạn nhìn ảnh hay văn bản đều như nhau ạ
c: =>x+2>0
hay x>-2
d: =>-4<=x<=3
e: =>\(x\in\varnothing\)
f: \(\Leftrightarrow\left[{}\begin{matrix}x>4\\x< -6\end{matrix}\right.\)
a/ \(A=2018\cdot2018\)
\(=\left(2019-1\right)\cdot2018=2019\cdot2018-2018\)
\(B=2017\cdot2019\)
\(=\left(2018-1\right)\cdot2019=2018\cdot2019-2019\)
\(\Rightarrow A>B\)
b/
\(A=2018\cdot2019\)
\(=\left(2017+1\right)\cdot2019=2017\cdot2019+2019\)
\(B=2017\cdot2020\)
\(=2017\cdot\left(2019+1\right)=2017\cdot2019+2017\)
\(\Rightarrow A>B\)
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
1. Tự làm
2. Ta có: \(x_1+x_2+x_3+...+x_{2017}+x_{2018}+x_{2019}+x_{2020}=0\)
=> \(\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+....+\left(x_{2017}+x_{2018}+x_{2019}\right)+x_{2020}=0\)
=> \(3+3+....+3+x_{2020}=0\) (gồm 673 chữ số 3 vì x1 + .... + x2019 gồm 2019 hạng tử gộp lại mỗi cặp 3 hạng tử)
=> \(3.673+x_{2020}=0\)
=> \(2019+x_{2020}=0\)
=> \(x_{2020}=-2019\)
3. a) 3(x - 1) - (x - 5) = -18
=> 3x - 3 - x + 5 = -18
=> 2x + 2 = -18
=> 2x = -18 - 2
=> 2x = -20
=> x = -20 : 2
=> x = 10
b ) x + (x + 1) + (x + 2) + ... + (x + 2019) = 0
=> (x + x + ... + x) + (1 + 2 + ... + 2019) = 0
=> 2020x + (2019 + 1).[(2019 - 1) : 1 + 1] : 2 = 0
=> 2020x + 2020. 2019 : 2 = 0
=> 2020x + 2039190 = 0
=> 2020x = -2039190
=> x = -2039190 : 2020
=> x = -10095
(xem lại đề)
c) Ta có: 3x + 23 = 3(x + 4) + 11
Do 3(x + 4) \(⋮\)4 => 11 \(⋮\)x + 4
=> x + 4 \(\in\)Ư(11) = {1; -1; 11; -11}
Với: +) x + 4 = 1 => x = 1 - 4 = -3
+) x + 4 = -1 => x = -1 - 4 = -5
+) x + 4 = 11 => x = 11 - 4 = 7
+) x + 4 = -11 => x = -11 - 4 = -15
4a) Ta có: 22x - y = 21x + x - y = 21 + (x - y)
Do 21x \(⋮\)7; x - y \(⋮\)7
=> 22x - y \(⋮\)7
b) 8x + 20y = 7x + 21y + x - y = 7(x + 3y) + (x - y)
Do : 7(x + 3y) \(⋮\)7; x - y \(⋮\)7
=> 8x + 20y \(⋮\)7
c) 11x + 10y = 14x + 7y - 3x + 3y = 7(2x + y) - 3(x - y)
Do: 7(2x + y) \(⋮\)7; 3(x - y) \(⋮\)7
=> 11x + 10y \(⋮\)7
Bài toán 1 : Tìm x nguyên biết.
a. 3 ≤ x – 2 < 5
=>3-2 < x-2 < 5-2
=>1 < x < 3
=>x=1
Vậy x=1
b. 0 ≤ x – 5 ≤ 2
=>0-5 < x-5 < 2-5
=>-5 < x < -3
=>x=-4
Vậy x=-4
Bài toán 2 : Tính hợp lý.
a. 4567 + (1234 – 4567) -4
=4567+1234-4567-4
=(4567-4567)+(1234-4)
=0+1230
=1230
b. 2001 – (53 + 1579) – (-53)
=2001-53-1579+53
=(2001-1579)+(-53+53)
=422+0
=422
c. 35 – 17 + 2017 – 35 + (-2017)
=(35-35)+[2017+(-2017)]-17-35
=0+0-17-35
=0-17-35
=-52
d. 37 + (-17) – 37 + 77
=(37-37)+[-17+77]
=0+60
=60
e. –(-219) + (-219) – 401 + 12
=0-401+12
=-389
f. |-85| – (-3).15
=85+3.15
=85+45
=130
g. 11.107 + 11.18 – 25.11
=11.(107+18-25)
=11.100
=1100
h. 115 – (-85) + 53 – (-500 + 53)
=115+85+53+500-53
=(53-53)+(115+85+500)
=0+700
=700
k. (-18) + (-31) + 98 + |-18| + (-69)
=-18-31+98+18-69
=(-18+18)+(-31-69)+98
=0+(-100)+98
=-100+98
=-2
Bài toán 4 : Tìm x, biêt.
a. 5x – 16 = 40 + x
5x - x = 40 + 16
4x = 56
x = 56 : 4
x=14
b. 4x – 10 = 15 – x
4x + x = 15 + 10
5x = 25
x = 25 : 5
x = 5
c. -12 + x = 5x – 20
-12 + 20 = 5x - x
8 = 4x
x = 8 : 4
x = 2
d. 7x – 4 = 20 + 3x
7x - 3x = 20 + 4
4x=24
x=24:4
x=6
e. 5x – 7 = – 21 – 2x
5x + 2x = -21+7
7x = -14
x = -14 : 7
x = -2
f. x + 15 = 7 – 6x
x + 6x = 7 - 15
7x = -8
x = -8/7
g. 17 – x = 7 – 6x
17 - 7 = -6x + x
10 = -7x
x=10/-7
h. 3x + (-21) = 12 – 8x
3x + 8x = 12 + 21
11x = 33
x = 33:11
x=3
k. 125 : (3x – 13) = 25
3x-13=125:25
3x-13=5
3x=5+13
3x=18
x=18:3
x=6
l. 541 + (218 – x) = 735
218-x=735-541
218-x=693
x=218-693
x=-475
b: \(\dfrac{5}{7}-\dfrac{2}{3}\cdot x=\dfrac{4}{5}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{7}-\dfrac{4}{5}=\dfrac{25-28}{35}=\dfrac{-3}{35}\)
=>\(x=-\dfrac{3}{35}:\dfrac{2}{3}=\dfrac{-3}{35}\cdot\dfrac{3}{2}=-\dfrac{9}{70}\)
c: \(\dfrac{1}{2}x+\dfrac{3}{5}x=-\dfrac{2}{3}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{3}{5}\right)=-\dfrac{2}{3}\)
=>\(x\cdot\dfrac{5+6}{10}=\dfrac{-2}{3}\)
=>\(x\cdot\dfrac{11}{10}=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}:\dfrac{11}{10}=-\dfrac{2}{3}\cdot\dfrac{10}{11}=\dfrac{-20}{33}\)
d: \(\dfrac{4}{7}\cdot x-x=-\dfrac{9}{14}\)
=>\(\dfrac{-3}{7}\cdot x=\dfrac{-9}{14}\)
=>\(\dfrac{3}{7}\cdot x=\dfrac{9}{14}\)
=>\(x=\dfrac{9}{14}:\dfrac{3}{7}=\dfrac{9}{14}\cdot\dfrac{7}{3}=\dfrac{3}{2}\)
a) 20-( x - 5 ) x2 = 2
( x - 5 ) x2 = 20-2=18
x - 5 = 18 : 2
x - 5 = 9
x = 9+5
x = 14.
b) 150 : ( 38 - 2x ) = 5
38 - 2x = 150 : 5 = 30
2x = 38 - 30 = 8
x = 8 : 2
x = 4.