A = [ 2, +∞ )
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2016

bài toán trên online math, bạn tự tìm hiểu

14 tháng 6 2020

A.   26=a27+b

B.    

Câu 1: 

Số học sinh giỏi là:

688:43x18=288(bạn)

Số học sinh khá là:

688-288=400(bạn)

Câu 2 đề thiếu rồi bạn

15 tháng 12 2016

Gọi số đĩa là a (a ϵ N*)

Theo bài ra ta có:96\(⋮\)a;36\(⋮\)a và a lớn nhất.

Ta có:96=25.3 ;36=22.32

=>ƯCLN(96;36)=22.3=4.3=12

Vậy có thể chia nhiều nhất thành 12 đĩa.

Mỗi đĩa có số kẹo là:96:12=8(cái)

Mỗi đĩa có số bánh là:36:12=3(cái)

Vậy mỗi đĩa có 8 cái kẹo và 3 cái bánh.

 

15 tháng 12 2016

Ta có :ƯCLN (96, 36)= 12
=> Có thể chia đc nhiều nhất 12 đĩa và :
Mỗi đĩa có số cái kẹo là : 96 :12 =8 cái kéo
Mỗi đĩa có số cái bánh là 36:12 =3 cái
Đáp số

NM
27 tháng 12 2020

bài 2

A B C O H K J

ta có \(\overrightarrow{AO}.\left(\overrightarrow{BO}+\overrightarrow{AC}-2\overrightarrow{BC}\right)=\overrightarrow{AO}.\overrightarrow{BO}+\overrightarrow{AO}.\overrightarrow{AC}-\overrightarrow{AO}.2\overrightarrow{BC}\)

\(=\overrightarrow{AO}.\overrightarrow{BO}+\overrightarrow{AO}.\overrightarrow{AC}=AO.BO.cos\left(120^0\right)+AO.AC.cos\left(30^0\right)\)

\(=\frac{a\sqrt{3}}{3}.\frac{a\sqrt{3}}{3}.-\frac{1}{2}+\frac{a\sqrt{3}}{3}.a.\frac{\sqrt{3}}{2}=\frac{a^2}{3}\)

b.Gọi J là trung điểm CK 

ta có \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=2\overrightarrow{MK}+2\overrightarrow{MC}=4\overrightarrow{MJ}\)

do \(\left|4\overrightarrow{MJ}\right|=a\Leftrightarrow MJ=\frac{a}{4}\)vậy tập hợp M là các điểm nằm trên đường tròn tâm J bán kính a/4.

Bài 3. điều kiện \(x\ge1\)

đặt \(\sqrt{x-1}=a\ge0\) ta có

\(a^2+a+3=3\sqrt{a^3+1}\)

hay \(\left(a^2-a+1\right)+2\left(a+1\right)=3\sqrt{\left(a^2-a+1\right).\left(a+1\right)}\)

\(\Leftrightarrow\left(\sqrt{a^2-a+1}-\sqrt{a+1}\right)\left(\sqrt{a^2-a+1}-2\sqrt{a+1}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a^2-a+1=a+1\\a^2-a+1=4\left(a+1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\) hoặc \(a=\frac{5+\sqrt{37}}{2}\)

từ đó ta tìm được x thuộc tập \(S=\left\{1;5;\frac{33+5\sqrt{37}}{2}\right\}\)