\(\frac{x^2}{X^2+1}\)) : (\(\frac{1}{x-1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

\(P=\left(\frac{2x}{2x^2-5x+2}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right) \)(dk x khac 3/2 ; x khac 1)

 
\(P=\left(\frac{2x}{\left(2x-3\right)\left(x-1\right)}-\frac{5\left(x-1\right)}{\left(2x+3\right)\left(x-1\right)}\right):\left(\frac{3\left(x-1\right)}{x-1}-\frac{2}{x-1}\right)\)

\(P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{3x-3-2}{x-1}\)

\(P=\frac{-\left(3x-5\right)}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{x-1}{3x-5}\)

\(P=\frac{-1}{2x-3}\)

b) TC: \(|2x-1|=3\)

TH1) \(|2x-1|=2x-1\)khi \(x\ge\frac{1}{2}\)

2x-1=3 suy ra x=2 ( thoa dk)

TH2) \(|2x-1|=-2x+1\)khi \(x< \frac{1}{2}\)

-2x+1=3 suy ra x=-1 ( thoa dk)

khi x= 2 thi P=-1 

khi x= -1 thi P=1/5

c) de P thuoc Z thi \(-\frac{1}{2x-3}\)thuoc Z 

suy ra \(\frac{1}{3-2x}\)thuoc Z
suy ra 3-2x thuoc \(Ư\left(1\right)\in\left\{\pm1\right\}\)

khi 3-2x=1 thi x= 1 (ko thoa dk x khac 1)

khi 3-2x=-1 thi x=2(thoa dk)

vay x=2 thi P thuoc Z

d) giai tg tu cau c

17 tháng 3 2020

a)   \(ĐKXĐ:\hept{\begin{cases}x\ne\frac{3}{2}\\x\ne1\\x\ne\frac{5}{3}\end{cases}}\)

\(P=\left(\frac{2x}{2x^2-5x+3}-\frac{5}{2x-3}\right):\left(3+\frac{2}{1-x}\right)\)

\(\Leftrightarrow P=\frac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\frac{3-3x+2}{1-x}\)

\(\Leftrightarrow P=\frac{2x-5x+5}{\left(2x-3\right)\left(x-1\right)}:\frac{-3x+5}{1-x}\)

\(\Leftrightarrow P=\frac{-3x+5}{\left(2x-3\right)\left(x-1\right)}\cdot\frac{1-x}{-3x+5}\)

\(\Leftrightarrow P=\frac{-1}{2x-3}\)

b) Khi |2x-1| = 3

\(\Leftrightarrow\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\Leftrightarrow P=\frac{-1}{4-3}=-1\\x=-1\Leftrightarrow P=\frac{-1}{-2-3}=\frac{1}{5}\end{cases}}\)

Vậy khi \(\left|2x-1\right|=3\Leftrightarrow P\in\left\{-1;\frac{1}{5}\right\}\)

c) Để \(P>1\)

\(\Leftrightarrow\frac{-1}{2x-3}>1\)

\(\Leftrightarrow-1>2x-3\)

\(\Leftrightarrow2x< 2\)

\(\Leftrightarrow x< 1\)

Vậy để \(P>1\Leftrightarrow x< 1\)

d) Để \(P\inℤ\)

\(\Leftrightarrow-1⋮2x-3\)

\(\Leftrightarrow2x-3\inƯ\left(-1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{1;2\right\}\)

Vì \(x\ne1\)

\(\Leftrightarrow x\in\left\{2\right\}\)

Vậy để \(P\inℤ\Leftrightarrow x\in\left\{2\right\}\)

3 tháng 8 2018

Rút gọn  \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\left(ĐKXĐ:x\ne2;x\ne3\right)\)

\(\Rightarrow A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)

         \(=\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)

         \(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x^2+3x-4x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x.\left(x+3\right)-4.\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)

          \(=\frac{x-4}{x-2}\)

b) Để A > 0 <=> x-4/x-2 > 0

                  <=> x-4>0 <=>x>4

c) Ta có: x-4/x-2 = x-2-2/x-2 = 1-2/x-2

Để A nguyên dương <=> 2 chia hết cho x-2

<=> x-2 thuộc Ư(2) = {-2;2;-1;1}

giải như bài lớp 6 bình thương (loại những giá trị giống ĐKXĐ)

3 tháng 8 2018

cảm ơn nạ rất rất rất....nhìu. Sư phụ hãy nhận của đồ đệ 1 lạy

8 tháng 12 2016

a) \(A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-3x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x^2-x-2x+2}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{x\left(x-1\right)-2\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x-1}{x-2}-\frac{x-3}{x-1}+\frac{-2x+4}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow A=\frac{\left(4x-1\right)\left(x-1\right)-\left(x-3\right)\left(x-2\right)-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{4x^2-4x-x+1-x^2+2x+3x-6-2x+4}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-2x-1}{\left(x-2\right)\left(x-1\right)}\)

\(\Leftrightarrow A=\frac{3x^2-3x+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x\left(x-1\right)+\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{\left(x-1\right)\left(3x+1\right)}{\left(x-2\right)\left(x-1\right)}\)\(=\frac{3x+1}{x-2}\)

b)\(\frac{3x+1}{x-2}=\frac{3x-6+7}{x-2}=\frac{3x-6}{x-2}+\frac{7}{x-2}=3+\frac{7}{x-2}\)

Ta có : \(x-2\inƯ_7\left\{-7;-1;1;7\right\}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-2=-7\\x-2=-1\\x-2=1\\x-2=7\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}\text{x=-5}\\\text{x=1}\\\text{x=3}\\\text{x}=9\end{array}\right.\)

\(\text{x}=1\) (loại)

Vậy giá trị nguyên tập hợp x là:

x=-5;3;9