K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

\(A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2014}}\\ 3A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\\ 3A-A=\left(3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2014}}\right)\\ 2A=3-\dfrac{1}{3^{2014}}\\ A=\left(3-\dfrac{1}{3^{2014}}\right):2\\ A=3:2-\dfrac{1}{3^{2014}}:2\\ A=\dfrac{3}{2}-\dfrac{1}{3^{2014}\cdot2}< \dfrac{3}{2}\)

Vậy \(A< \dfrac{3}{2}\)

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

Lời giải:
$M=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{2014}{5^{2014}}$

$5M=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{2014}{5^{2013}}$

$\Rightarrow 4M=5M-M=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}-\frac{2014}{5^{2014}}$
$4M+\frac{2014}{5^{2014}}=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2013}}$

$5(4M+\frac{2014}{5^{2014}})=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2012}}$

$\Rightarrow 4(4M+\frac{2014}{5^{2014}})=5-\frac{1}{5^{2013}}$

$M=\frac{5}{16}-\frac{1}{16.5^{2013}-\frac{2014}{4.5^{2014}}$

28 tháng 6 2021

Ta có `3A=1+1/3+....+1/3^99`

`=>3A-A=1-1/3^100`

`=>2A=1-1/3^100`

`=>A=1/2-1/(2.3^100)<1/2`

Hay `A<B`

8 tháng 7 2023

\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)

\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)

\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)

\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)

\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)

mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)

\(\Rightarrow A< B\)

 

 

8 tháng 7 2023

       A =      \(\dfrac{1}{3}\)\(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)

     3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)

3A - A =  1 - \(\dfrac{1}{3^{2023}}\)

   2A   = 1 - \(\dfrac{1}{3^{2023}}\) < 1

      B =  \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)\(\dfrac{1}{12}\)

      B  = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)

     B   = \(\dfrac{8}{12}\)

     B   = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1 

2A < 2B ⇒ A < B 

23 tháng 4 2017

\(A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}\)

\(3A=3\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}\right)\)

\(3A=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{2013}}\)

\(3A-A=\left(3+1+...+\dfrac{1}{3^{2013}}\right)-\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{2014}}\right)\)

\(2A=3-\dfrac{1}{3^{2014}}\Rightarrow A=\dfrac{3}{2}-\dfrac{\dfrac{1}{3^{2014}}}{2}< \dfrac{3}{2}\)

Vậy \(A< \dfrac{3}{2}\)

4 tháng 5 2018

A=1+13+132+133+...+132014A=1+13+132+133+...+132014

3A=3(1+13+132+133+...+132014)3A=3(1+13+132+133+...+132014)

3A=3+1+13+...+1320133A=3+1+13+...+132013

3A−A=(3+1+...+132013)−(1+13+...+132014)3A−A=(3+1+...+132013)−(1+13+...+132014)

2A=3−132014⇒A=32−1320142<32

17 tháng 8 2021

\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)

\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)

\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)

\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)

Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B

AH
Akai Haruma
Giáo viên
22 tháng 5 2023

Lời giải:
$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2022}}$

$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2021}}$

$\Rightarrow 3A-A=1-\frac{1}{3^{2022}}$

$\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^{2022}}$

Xét hiệu:
$A-B=\frac{1}{2}-\frac{1}{2.3^{2022}}-(1-\frac{1}{3^{2021}})$

$=\frac{1}{3^{2021}}-\frac{1}{2.3^{2022}}-\frac{1}{2}$

$=\frac{5}{2.3^{2022}}-\frac{1}{2}$

$< \frac{1}{2}-\frac{1}{2}=0$

$\Rightarrow A< B$

22 tháng 5 2023

`A = 1/3 +1/3^2 +1/3^3 +...+1/3^2022`

`<=> 3A = 1 +1/3 +1/3^2 +...+ 1/3^2021`

`=>2A =3A-A =1+1/3 +1/3^2 +..+ 1/3^2021 - 1/3-1/3^2-1/3^3..-1/3^2022`

`2A = 1-1/3^2022`

`=> A = (1-1/3^2022) :2`

Ta thấy `1- 1/3^2022 < 1-1/3^2021`

`=> (1 -1/3^2022):2<1-1/3^2021`

Hay `A<B`

\(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)

=>2S=1-1/3^100

=>S=1/2-1/2*3^100<1/2

20 tháng 8 2021

2)Ta có: \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

              \(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) mà \(2^{332}< 8^{111},3^{223}>9^{111}\) nên suy ra \(2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

20 tháng 8 2021

1) \(A=\dfrac{10^{2013}+1}{10^{2014}+1}\Rightarrow10A=\dfrac{10^{2014}+10}{10^{2014}+1}=\dfrac{10^{2014}+1}{10^{2014}+1}+\dfrac{9}{10^{2014}+1}=1+\dfrac{9}{10^{2014}+1}\)

\(B=\dfrac{10^{2014}+1}{10^{2015}+1}\Rightarrow10B=\dfrac{10^{2015}+10}{10^{2015}+1}=\dfrac{10^{2015}+1}{10^{2015}+1}+\dfrac{9}{10^{2015}+1}=1+\dfrac{9}{10^{2015}+1}\)Vì: \(10^{2014}+1< 10^{2015}+1\Rightarrow\dfrac{9}{10^{2014}+1}>\dfrac{9}{10^{2015}+1}\Rightarrow1+\dfrac{9}{10^{2014}+1}>1+\dfrac{9}{10^{2015}+1}\)

Nên suy ra \(10A>10B\Rightarrow A>B\)